Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T19:20:38.976Z Has data issue: false hasContentIssue false

On Measurement Properties of Continuation Ratio Models

Published online by Cambridge University Press:  01 January 2025

Bas T. Hemker*
Affiliation:
CITO National Institute for Educational Measurement
L. Andries van der Ark
Affiliation:
Tilburg University
Klaas Sijtsma
Affiliation:
Tilburg University
*
Requests for reprints should be sent to Bas T. Hemker, Measurement and Research Department, CITO National Institute for Educational Measurement, EO. Box 1034, 6801 MG Arnhem, THE NETHERLANDS. E-Mail: bas.hemker@citogroep

Abstract

Three classes of polytomous IRT models are distinguished. These classes are the adjacent category models, the cumulative probability models, and the continuation ratio models. So far, the latter class has received relatively little attention. The class of continuation ratio models includes logistic models, such as the sequential model (Tutz, 1990), and nonlogistic models, such as the acceleration model (Samejima, 1995) and the nonparametric sequential model (Hemker, 1996). Four measurement properties are discussed. These are monotone likelihood ratio of the total score, stochastic ordering of the latent trait by the total score, stochastic ordering of the total score by the latent trait, and invariant item ordering. These properties have been investigated previously for the adjacent category models and the cumulative probability models, and for the continuation ratio models this is done here. It is shown that stochastic ordering of the total score by the latent trait is implied by all continuation ratio models, while monotone likelihood ratio of the total score and stochastic ordering on the latent trait by the total score are not implied by any of the continuation ratio models. Only the sequential rating scale model implies the property of invariant item ordering. Also, we present a Venn-diagram showing the relationships between all known polytomous IRT models from all three classes.

Type
Articles
Copyright
Copyright © 2001 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agresti, A. (1990). Categorical data analysis. New York, NY: Wiley.Google Scholar
Akkermans, L.M.W. (1998). Studies on statistical models for polytomously scored test items. Enschede, The Netherlands: University of Twente.Google Scholar
Alexander, P.A., & Murphy, P.K. (1998). Profiling the difference in students' knowledge, interest, and strategic processing. Journal of Educational Psychology, 90, 435447.CrossRefGoogle Scholar
Andersen, E.B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 6981.CrossRefGoogle Scholar
Andersen, E.B. (1997). The rating scale model. In van der Linden, W.J., & Hambleton, R. K. (Eds.), Handbook of modern item response theory (pp. 6784). New York, NY: Springer.CrossRefGoogle Scholar
Andrich, D. (1978). A rating scale formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Andrich, D. (1995). Distinctive and incompatible properties of two common classes of IRT models for graded responses. Applied Psychological Measurement, 19, 101119.CrossRefGoogle Scholar
Bleichrodt, N., Drenth, P. J. D., Zaal, J.N., & Resing, W.C.M. (1985). Revisie Amsterdamse Kinder-Intelligentie Test (RAKIT) [Revision of the Amsterdam Child Intelligence Test], Lisse, The Netherlands: Swets & Zeitlinger.Google Scholar
Chang, H., & Mazzeo, J. (1994). The unique correspondence of the item category response functions in polytomously scored item response models. Psychometrika, 59, 391404.CrossRefGoogle Scholar
CITO (1998). Nederlands als tweede taal (NT2) profiel toets [Dutch as a foreign language profile test], Arnhem, The Netherlands: Author.Google Scholar
Cooke, D.J., Michie, C., Hart, S.D., & Hare, R.D. (1999). Evaluating the screening version of the Hare Psychopathy Checklist Revised (PCI, Sv)—An item response theory analysis. Psychological Assessment, 11, 313.CrossRefGoogle Scholar
De Vries, H.H. (1988). Het Partial Credit Model en het Sequentiële Rasch Model met stochastisch design [The partial credit model and the sequential Rasch model with stochastic design]. Unpublished master's thesis, University of Amsterdam.Google Scholar
Glas, C.A.W. (1989). Contributions to estimating and testing Rasch models. Enschede, The Netherlands: University of Twente.Google Scholar
Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383392.CrossRefGoogle Scholar
Gumpel, T., Wilson, M., & Shalev, R. (1998). An item response theory analysis of the Conner's Teachers Rating-Scale. Journal of Learning Disabilities, 31, 525532.CrossRefGoogle ScholarPubMed
Hemker, B.T. (2001). Unidimensional IRT models for polytomous items, with results for Mokken scale analysis. The Netherlands: Utrecht University.Google Scholar
Hemker, B.T. (2001). Reversibility revisited and other comparisons of three types of polytomous IRT models. In Boomsma, A., van Duijn, M.A.J., & Snijders, T.A.B. (Eds.), Essays on item response theory (pp. 277296). New York, NY: Springer.CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (2001). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679693.CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331347.CrossRefGoogle Scholar
Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 7779.CrossRefGoogle Scholar
Junker, B.W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255278.CrossRefGoogle Scholar
Junker, B.W. (1993). Conditional association, essential independence and monotone unidimensional item response models. The Annals of Statistics, 21, 13591378.CrossRefGoogle Scholar
Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 437450.CrossRefGoogle Scholar
Lehmann, E.L. (1959). Testing statistical hypotheses. New York, NY: Wiley.Google Scholar
Lehmann, E. L. (1986). Testing statistical hypotheses 2nd ed., New York, NY: Wiley.CrossRefGoogle Scholar
Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Masters, G. N. (1988). Measurement models for ordered response categories. In Langeheine, R., & Rost, J. (Eds.), Latent trait and latent class models (pp. 1129). New York, NY: Plenum press.CrossRefGoogle Scholar
Masters, G.N., Wright, B.D. (1997). The partial credit model. In van der Linden, W.J., & Hambleton, R. K. (Eds.), Handbook of modern item response theory (pp. 101121). New York, NY: Springer.CrossRefGoogle Scholar
Maurer, T.J., Raju, N.S., & Collins, W.C. (1998). Peer and subordinate performance-appraisal measurement equivalence. Journal of Applied Psychology, 5, 693702.CrossRefGoogle Scholar
Mellenbergh, G.J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psychological Measurement, 19, 91100.CrossRefGoogle Scholar
Mokken, R.J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417430.CrossRefGoogle Scholar
Molenaar, I.W. (1983). Item steps. Groningen, The Netherlands: University of Groningen, Department of Statistics and Measurement Theory.Google Scholar
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 5971.CrossRefGoogle Scholar
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159176.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
Rosenbaum, P.R. (1985). Comparing distributions of item responses for two groups. British Journal of Mathematical and Statistical Psychology, 38, 206215.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph Supplement No. 17.CrossRefGoogle Scholar
Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph Supplement No. 18.Google Scholar
Samejima, F. (1995). Acceleration model in the heterogeneous case of the general graded response model. Psychometrika, 60, 549572.CrossRefGoogle Scholar
Samejima, F. (1996, April). Polychotomous responses and the test score. Paper presented at National Council on Measurement in Education Meeting, New York.Google Scholar
Samejima, F. (1997, March). An expansion of the logistic positive exponent family of models to a family of graded response models. Paper presented at National Council on Measurement in Education Meeting, Chigago.Google Scholar
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281304.CrossRefGoogle Scholar
Sijtsma, K., & Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models. Psychometrika, 63, 183200.CrossRefGoogle Scholar
Sijtsma, K., & Hemker, B.T. (2000). A taxonomy for ordering persons and items using simple sum scores. Journal of Educational and Behavioral Statistics, 25, 391415.CrossRefGoogle Scholar
Sijtsma, K., & Junker, B.W. (2001). A survey of theory and methods of invariant item ordering. British Journal of Mathematical and Statistical Psychology, 49, 79105.CrossRefGoogle Scholar
Sijtsma, K., & van der Ark, L.A. (2001). Progress in NIRT analysis of polytomous item scores: Dilemmas and practical solutions. In Boomsma, A., van Duijn, M.A.J., & Snijders, T.A.B. (Eds.), Essays on item response theory (pp. 297318). New York, NY: Springer.CrossRefGoogle Scholar
Sijtsma, K., & Verweij, A.C. (1999). Knowledge of solution strategies and IRT modeling of items for transitive reasoning. Applied Psychological Measurement, 23, 5568.CrossRefGoogle Scholar
Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577.CrossRefGoogle Scholar
Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical Psychology, 43, 3955.CrossRefGoogle Scholar
Tutz, G. (1997). Sequential models for ordered responses. In van der Linden, W.J., & Hambleton, R. K. (Eds.), Handbook of modern item response theory (pp. 139152). New York, NY: Springer.CrossRefGoogle Scholar
van der Ark, L.A. (2000). Practical consequences of stochastic ordering of the latent trait under various polytomous IRT models. Manuscript submitted for publication.Google Scholar
van Engelenburg, G. (1997). On psychometric models for polytomous items with ordered categories within the framework of item response theory. Unpublished doctoral dissertation, University of Amsterdam.Google Scholar
Verhelst, N.D., Glas, C.A.W., De Vries, H.H. (1997). A steps model to analyze partial credit. In van der Linden, W.J., & Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 123138). New York, NY: Springer.CrossRefGoogle Scholar
Verhelst, N.D., Glas, C.A.W., & Verstralen, H.H.F.M. (1995). OPLM: One Parameter Logistic Model. Computer program and manual. Arnhem, The Netherlands: CITO.Google Scholar