Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T14:43:01.979Z Has data issue: false hasContentIssue false

On Muthén’s Maximum Likelihood for Two-Level Covariance Structure Models

Published online by Cambridge University Press:  01 January 2025

Ke-Hai Yuan*
Affiliation:
University of Notre Dame
Kentaro Hayashi
Affiliation:
University of Hawaii at Manoa
*
Request for reprints should be sent to Ke-Hai Yuan, University of Notre Dame, In 46556, USA. E-mail: kyuan@nd.edu

Abstract

Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthén’s maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When data are balanced, MUML is equivalent to the maximum likelihood procedure. Simulation results in the literature endorse the MUML procedure also for unbalanced data. This paper studies the analytical properties of the MUML procedure in general. The results indicate that the MUML procedure leads to correct model inference asymptotically when level-2 sample size goes to infinity and the coefficient of variation of the level-1 sample sizes goes to zero. The study clearly identifies the impact of level-1 and level-2 sample sizes on the standard errors and test statistic of the MUML procedure. Analytical results explain previous simulation results and will guide the design or data collection for the future applications of MUML.

Type
Original Paper
Copyright
Copyright © 2005 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by NSF Grant DMS04-37167.

We thank Dr. Bengt Muthén for providing key references. We are also grateful to three expert reviewers for their constructive comments that have led the paper to an improvement over the previous version.

References

Anderson, J.C., & Gerbing, D.W. (1984). The effects of sampling error on convergence, improper solutions and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155173.CrossRefGoogle Scholar
Bentler, P.M., & Liang, J. (2003). Two-level mean and covariance structures: Maximum likelihood via an EM algorithm. In Reise, S., & Duan, N. (Eds.), Multilevel Modeling: Methodological Advances Issues and Applications (pp. 5370). Mahwah, NJ: Erlbaum.Google Scholar
Boomsma, A. (1982). The robustness of LISREL against small sample sizes in factor analysis models. In Jöreskog, K.G., & Wold, H. (Eds.), Systems Under Indirect bservation: Causality Structure Prediction (pp. 149173). Amsterdam: North-Holland.Google Scholar
Browne, M.W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Curran, P.J. (1994). The Robustness of Confirmatory Factor Analysis to Model Misspecification and Violations of Normality. Ph.D. thesis, Arizona State University.Google Scholar
Curran, P.J., Bollen, K.A., Paxton, P., Kirby, J., & Chen, F. (2002). The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from Monte Carlo simulation. Multivariate Behavioral Research, 37, 136.CrossRefGoogle ScholarPubMed
Duncan, T.E., Duncan, S.C., Strycker, L.A., Li, F., & Alpert, A. (1999). An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. Mahwah, NJ: Erlbaum.Google Scholar
du Toit, S. & du Toit, M. (in press) Multilevel structural equation modeling. In de Leeuw, J. & Kreft, I. (Eds.), Handbook of Quantitative Multilevel Analysis. New York: Kluwer.Google Scholar
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73, 4356.CrossRefGoogle Scholar
Goldstein, H. (1995). Multilevel Statistical Models (2nd ed.). London: Edward Arnold.Google Scholar
Goldstein, H., & McDonald, R.P. (1988). A general model for the analysis of multilevel data. Psychometrika, 53, 435467.CrossRefGoogle Scholar
Heck, R.H., Thomas, S.L. (2000). An Introduction of Multilevel Modeling Techniques. Mahwah, NJ: Erlbaum.Google Scholar
Hox, J.J. (1993). Factor analysis of multilevel data: Gauging the Muthén model. In Oud, J.H.L., & van Blokland-Vogelesang, R.A.W. (Eds.), Advances in Longitudinal and Multivariate Analysis in the Behavioral Sciences (pp. 141156). Nijmegen: ITS.Google Scholar
Hox, J.J. (2002). Multilevel Analysis: Techniques and Applications. Erlbaum, NJ: Mahwah.CrossRefGoogle Scholar
Hox, J.J., & Maas, C.J.M. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8, 157174.CrossRefGoogle Scholar
Hox, J.J., & Maas, C.J.M. (2002). Sample sizes for multilevel modeling. In Blasius, J., Hox, J., de Leeuw, E., & Schmidt, P. (Eds.), Social science methodology in the new illennium. Proceedings of the Fifth International Conference on Logic and Methodology (2nd ed.). Opladen, RG: Leske + Budrich Verlag (CD-ROM).Google Scholar
Kano, Y., Miura, A. (2002). Graphical multivariate analysis with AMOS, EQS, and CALIS: A visual approach to covariance structure analysis (revised edn) Kyoto. Japan: Gendai-Sugakusha.Google Scholar
Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. London: Sage.CrossRefGoogle Scholar
Lee, S.-Y. (1990). Multilevel analysis of structural equation models. Biometrika, 77, 763772.CrossRefGoogle Scholar
Lee, S.-Y., & Poon, W.-Y. (1998). Analysis of two-level structural equation models via EM type algorithms. Statistica Sinica, 8, 749766.Google Scholar
Liang, J., & Bentler, P.M. (2004). An EM algorithm for fitting two-level structural equation models. Psychometrika, 69, 101122.CrossRefGoogle Scholar
Liang, K.Y., & Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322.CrossRefGoogle Scholar
Little, T.D., Schnabel, K.U., & Baumert, J. (2000). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches and Specific Examples. Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
Longford, N.T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74, 817827.CrossRefGoogle Scholar
Longford, N.T. (1993). Regression analysis of multilevel data with measurement error. British Journal of Mathematical and Statistical Psychology, 46, 301311.CrossRefGoogle Scholar
Magnus, J.R., & Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics (revised edn). New York: Wiley.Google Scholar
McArdle, J.J., Hamagami, F. (1996). Multilevel models from a multiple group structural equation perspective. In Marcoulides, G.A., & Schumacker, R.E. (Eds.), Advanced Structural Equation Modeling Techniques (pp. 89124). Mahwah, NJ: Erlbaum.Google Scholar
McDonald, R.P. (1994). The bilevel reticular action model for path analysis with latent variables. Sociological Methods and Research, 22, 399413.CrossRefGoogle Scholar
McDonald, R.P., & Goldstein, H. (1989). Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42, 215232.CrossRefGoogle Scholar
Muirhead, R.J. (1982). Aspects of Multivariate Statistical Theory. New York: Wiley.CrossRefGoogle Scholar
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557585.CrossRefGoogle Scholar
Muthén, B. (1990) Mean and covariance structure analysis of hierarchical data. Paper presented at the Psychometric Society meeting in Princeton, NJ, June 1990. UCLA Statistics Series 62Google Scholar
Muthén, B. (1994). Multilevel covariance structure analysis. Sociological Methods and Research, 22, 376398.CrossRefGoogle Scholar
Muthén, B. (1997). Latent variable modeling of longitudinal and multilevel data. In Raftery, A. (Eds.), Sociological Methodology (pp. 453480). Boston: Blackwell Publishers.Google Scholar
Muthén, B., & Satorra, A. (1995). Complex sample data in structural equation modeling. In Marsden, P.V. (Eds.), Sociological Methodology 1995 (pp. 267316). Cambridge, MA: Blackwell Publishers.Google Scholar
Poon, W.-Y., Lee, S.-Y. (1994). A distribution free approach for analysis of two-level structural equation model. Computational Statistics and Data Analysis, 17, 265275.CrossRefGoogle Scholar
Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical linear models (2nd ed.). Newbury Park: Sage.Google Scholar
Reise, S., & Duan, N. (2003). Multilevel Modeling: Methodological Advances, Issues, and Applications. Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In von Eye, A., & Clogg, C.C. (Eds.), Latent Variables Analysis: Applications for Developmental Research (pp. 399419). Thousand Oaks CA: Sage.Google Scholar
Snijders, T., & Bosker, R. (1999). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. Thousand Oaks CA: Sage.Google Scholar
Yuan, K.-H., & Bentler, P.M. (2002). On normal theory based inference for multilevel models with distributional violations. Psychometrika, 67, 539561.CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P.M. (1997). Improving parameter tests in covariance structure analysis. Computational Statistics and Data Analysis, 26, 177198.CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P.M. (2003). Eight test statistics for multilevel structural equation models. Computational Statistics and Data Analysis, 44, 89107.CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P.M. (2003b) Stepwise analysis of multilevel covariance structure models (under review)Google Scholar
Yuan, K.-H., & Jennrich, R.I. (1998). Asymptotics of estimating equations under natural conditions. Journal of Multivariate Analysis, 65, 245260.CrossRefGoogle Scholar
Yuan, K.-H., & Marshall, L.L., Bentler, P.M. (2002). A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers. Psychometrika, 67, 95122.CrossRefGoogle Scholar
Yuan, K.-H., Marshall, L.L., & Bentler, P.M. (2003). Assessing the effect of model misspecifications on parameter estimates in structural equation models. In Stolzenberg, R.M. (Eds.), Sociological Methodology 2003 (pp. 241265). Oxford: Blackwell Publishing.Google Scholar