Hostname: page-component-5f745c7db-f9j5r Total loading time: 0 Render date: 2025-01-06T21:37:02.415Z Has data issue: true hasContentIssue false

On the Control of Psychological Networks

Published online by Cambridge University Press:  01 January 2025

Teague R. Henry*
Affiliation:
University of Virginia University of Pittsburgh
Donald J. Robinaugh
Affiliation:
Harvard Medical School & Massachusetts General Hospital
Eiko I. Fried
Affiliation:
Leiden University
*
Correspondence should be made to Teague R. Henry, Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA. Email: trhenry@virginia.edu

Abstract

The combination of network theory and network psychometric methods has opened up a variety of new ways to conceptualize and study psychological disorders. The idea of psychological disorders as dynamic systems has sparked interest in developing interventions based on results of network analytic tools. However, simply estimating a network model is not sufficient for determining which symptoms might be most effective to intervene upon, nor is it sufficient for determining the potential efficacy of any given intervention. In this paper, we attempt to remedy this gap by introducing fundamental concepts of control theory to both psychometricians and applied psychologists. We introduce two controllability statistics to the psychometric literature, average and modal controllability, to facilitate selecting the best set of intervention targets. Following this introduction, we show how intervention scientists can probe the effects of both theoretical and empirical interventions on networks derived from real data and demonstrate how simulations can account for intervention cost and the desire to reduce specific symptoms. Every step is based on rich clinical EMA data from a sample of subjects undergoing treatment for complicated grief, with a focus on the outcome suicidal ideation. All methods are implemented in an open-source R package netcontrol, and complete code for replicating the analyses in this manuscript are available online.

Type
Application Reviews and Case Studies
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This project was supported by the American Foundation for Suicide Prevention, the Charles A. King Trust Postdoctoral Research Fellowship Program, Bank of America, N.A., Co-Trustees, and a National Institute of Mental Health Career Development Award (1K23MH113805-01A1) awarded to D. Robinaugh. The content is solely the responsibility of the authors and does not necessarily represent the views of these organizations. Correspondence should be directed to Teague R. Henry at trhenry@virginia.edu

References

Åström, K. J. (2006). Introdution to stochastic control theory. Mineola, N.Y: Dover Publications. Google Scholar
Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica, 35 (3), 407427. CrossRefGoogle Scholar
Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64 (9), 10891108. CrossRefGoogle ScholarPubMed
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16 (1), 513. CrossRefGoogle ScholarPubMed
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8 (4), e60188 CrossRefGoogle ScholarPubMed
Burger, J., van der Veen, D. C., Robinaugh, D., Quax, R., Riese, H., Schoevers, R. A., & Epskamp, S. (2019). Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: A computational model of functional analysis (Preprint). PsyArXiv. https://doi.org/10.31234/osf.io/gw2uc. CrossRefGoogle Scholar
Carver, C. S., & Scheier, M. F. (1998). On the self-regulation of behavior. (1). Cambridge: Cambridge University Press. CrossRefGoogle Scholar
Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science: The Official Journal of the Society for Prevention Research, 5 (3), 185196. CrossRefGoogle ScholarPubMed
Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C. (2019). The study of psychopathology from the network analysis perspective: A systematic review. Psychotherapy and Psychosomatics, 88 (2), 7183. CrossRefGoogle Scholar
Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33 (2–3), 137150. CrossRefGoogle ScholarPubMed
Epskamp, S. (2017). Network Psychometrics (Unpublished doctoral dissertation). University of Amsterdam.Google Scholar
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82 (4), 904927. CrossRefGoogle ScholarPubMed
Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research 53(4), 453–480. https://doi.org/10.1080/00273171.2018.1454823 CrossRefGoogle Scholar
Fried, E. I. (2020). Lack of theory building and testing impedes progress in the factor and network literature. Psychological Inquiry, 31 (4), 271288. CrossRefGoogle Scholar
Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52 (1), 110. CrossRefGoogle ScholarPubMed
Hamdan, A. M. A., & Nayfeh, A. H. (1989). Measures of modal controllability and observability for first- and second-order linear systems. Journal of Guidance, Control, and Dynamics, 12 (3), 421428. CrossRefGoogle Scholar
Haslbeck, J. M. B., Ryan, O., Robinaugh, D. J., Waldorp, L., & Borsboom, D. (2019). Modeling psychopathology: From data models to formal theories (Preprint). PsyArXiv. https://doi.org/10.31234/osf.io/jgm7f.CrossRefGoogle Scholar
Henry, T. R. (2020). Netcontrol: Control theory methods for networks. https://CRAN.R-project.org/package=netcontrol (R package version 0.1)Google Scholar
Hyland, M. E. (1987). Control theory interpretation of psychological mechanisms of depression: Comparison and integration of several theories. Psychological Bulletin. 102(1), 109–121. https://doi.org/10.1037/0033-2909.102.1.109 CrossRefGoogle Scholar
Johnson, R. E., Chang, C. -H., & Lord, R. G. (2006). Moving from cognition to behavior: What the research says. Psychological Bulletin, 132 (3), 381415. CrossRefGoogle ScholarPubMed
Jordan, D. G., Winer, E. S., & Salem, T. (2020). The current status of temporal network analysis for clinical science: Considerations as the paradigm shifts?. Journal of Clinical Psychology, 76 (9), 15911612. CrossRefGoogle Scholar
Kendler, K. S., Zachar, P., & Craver, C. (2011). What kinds of things are psychiatric disorders?. Psychological Medicine, 41 (6), 11431150. CrossRefGoogle ScholarPubMed
Kim, N. S., & Ahn, W. -K. (2002). Clinical psychologist’s theory-based representations of mental disorders predict their diagnostic reasoning and memory. Journal of Experimental Psychology: General. 131(4), 451–476. https://doi.org/10.1037/0096-3445.131.4.451 CrossRefGoogle Scholar
Kouvaritakis, B., & Cannon, M. (2015). Model predictive control. New York, NY: Springer. Google Scholar
Levine, S. Z., & Leucht, S. (2016). Identifying a system of predominant negative symptoms: Network analysis of three randomized clinical trials. Schizophrenia Research, 178 (1–3), 1722. CrossRefGoogle ScholarPubMed
Lewis, F. L., Vrabie, D. L., & Syrmos, V. L. (2012). Optimal control. (3). Hoboken: Wiley. CrossRefGoogle Scholar
Ljung, L. (1999). System identification: Theory for the user. (2.) Upper Saddle River, NJ: Prentice Hall PTR. Google Scholar
Molenaar, P. C. (1987). Dynamic assessment and adaptive optimization of the pschotherapeutic process. Behavioral Assessment, 9 (4), 389416. Google Scholar
Molenaar, P. C. (2010). Note on optimization of individual psychotherapeutic processes. Journal of Mathematical Psychology, 54 (1), 208213. CrossRefGoogle Scholar
Nahum-Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K., Tewari, A., & Murphy, S. A. (2018). Just-in-time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support. Annals of Behavioral Medicine, 52 (6), 446462. CrossRefGoogle ScholarPubMed
Olshevsky, A. (2014a) Minimal Controllability Problems. arXiv:1304.3071 [cs, math].CrossRefGoogle Scholar
Olshevsky, A. (2014b) Minimum Input Selection for Structural Controllability. arXiv:1407.2884 [cs, math].CrossRefGoogle Scholar
Pasqualetti, F., Zampieri, S., & Bullo, F. (2014). Controllability metrics, limitations and algorithms for complex networks. In: (pp. 3287–3292). IEEE. https://doi.org/10.1109/TCNS.2014.2310254 CrossRefGoogle Scholar
Preumont, A. (1997). Controllability and observability. In: Vibration control of active structures: An introduction (pp. 173–195). Dordrecht: Springer Netherlands.Google Scholar
Radden, J. (2018). Rethinking disease in psychiatry: Disease models and the medical imaginary. Journal of Evaluation in Clinical Practice, 24 (5), 10871092. CrossRefGoogle ScholarPubMed
Rivera, D. E., Hekler, E. B., Savage, J. S., & Downs, D. S. (2018). Intensively adaptive interventions using control systems engineering: Two illustrative examples. In: Collins, L. M., & Kugler, K. C. (eds), Optimization of behavioral, biobehavioral, and biomedical interventions: Advanced topics (pp. 121–173). Cham: Springer. https://doi.org/10.1007/978-3-319-91776-4_5 CrossRefGoogle Scholar
Rivera, D. E., Pew, M. D., & Collins, L. M. (2007). Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence, 88, S31S40. CrossRefGoogle Scholar
Robinaugh, D. J., Haslbeck, J. M. B., Waldorp, L., Kossakowski, J. J., Fried, E. I., Millner, A., & Borsboom, D. (2019). Advancing the network theory of mental disorders: A computational model of panic disorder (Preprint). PsyArXiv. https://doi.org/10.31234/osf.io/km37w.CrossRefGoogle Scholar
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2019). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine pp.1–14. https://doi.org/10.1017/S0033291719003404 CrossRefGoogle Scholar
Schultz, P. R. (1964). An optimal control problem with state vector measurement errors. In: Advances in control systems (vol. 1, pp. 197–243). Elsevier. https://doi.org/10.1016/B978-1-4831-6717-6.50010-3 CrossRefGoogle Scholar
Shear, M. K. (2010). Complicated grief treatment: The theory, practice and outcomes. Bereavement Care, 29 (3), 1014. CrossRefGoogle ScholarPubMed
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: With R examples. (4). New York, NY: Springer. CrossRefGoogle Scholar
Sinclair, K., & Molenaar, P. C. (2008). Optimal control of psychological processes: A new computational paradigm. In: Bulletin de la Societe des Sciences Medicales Luxembourg (vol. 1, pp. 13–33). Luxembourg.Google Scholar
Summers, T. H., Cortesi, F. L., & Lygeros, J. (2016). On submodularity and controllability in complex dynamical networks. IEEE Transactions on Control of Network Systems, 3 (1), 91101. CrossRefGoogle Scholar