Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T16:29:06.765Z Has data issue: false hasContentIssue false

On the oblique Rotation of a Factor Matrix to a Specified Pattern

Published online by Cambridge University Press:  01 January 2025

Michael Browne
Affiliation:
Educational Testing Service
Walter Kristof
Affiliation:
Educational Testing Service

Abstract

This paper presents a procedure for rotating an arbitrary factor matrix to maximum similarity with a specified factor pattern. The sum of squared distances between specified vectors and rotated vectors in oblique Euclidian space is minimized. An example of the application of the procedure is given.

Type
Original Paper
Copyright
Copyright © 1969 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This research was supported in part by the National Institute of Child Health and Human Development, Research Grant 1 PO1 HDO1762.

Now at the National Institute for Personnel Research, South Africa.

The names of the authors are given in alphabetical order. Their contributions to the paper are equal.

References

Bargmann, R. E. Matrices and determinants. In Selby, S. M. (Eds.), Handbook of tables for mathematics, 3rd ed., (pp. 144166). Cleveland: Chemical Rubber Co., 1967.Google Scholar
Browne, M. W. On oblique Procrustes rotation. Psychometrika, 1967, 32, 125132.CrossRefGoogle ScholarPubMed
Cliff, N. Orthogonal rotation to congruence. Psychomctrika, 1966, 31, 3342.Google Scholar
Fischer, G., & Roppert, J. Bemerkungen zu einem Verfahren der Transformationsanalyse. Archiv für die gesamte Psychologie, 1964, 116, 98100.Google Scholar
Green, B. F. The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 1952, 17, 429440.Google Scholar
Gruvaeus, G. T. Procrustes pattern rotation. Research Bulletin. Princeton: Educational Testing Service. In preparation.Google Scholar
Guttman, L. Image theory for the structure of quantitative variates. Psychometrika, 1953, 18, 277296.CrossRefGoogle Scholar
Harman, H. H. Modern factor analysis, 2nd ed., (pp. 6060). Chicago: University of Chicago Press, 1967.Google Scholar
Hendrickson, A. E., & White, P. O. PROMAX: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 1964, 17, 6570.CrossRefGoogle Scholar
Jennrich, R. I., & Sampson, P. F. Rotation for simple loadings. Psychometrika, 1966, 31, 313323.CrossRefGoogle ScholarPubMed
Kaiser, H. F. Image analysis. In Harris, C. W. (Ed.), Problems in measuring change. University of Wisconsin Press, 1963.Google Scholar
Kristof, W. Die beste orthogonale Transformation zur gegenseitigen Überführung zweier Faktorenmatrizen. Diagnostica, 1964, 10, 8790.Google Scholar
Meredith, W. Notes on factorial invariance. Psychometrika, 1964, 29, 177185.CrossRefGoogle Scholar
Mosier, C. I. Determining a simple structure when loadings for certain tests are known. Psychometrika, 1939, 4, 149192.CrossRefGoogle Scholar
Schönemann, P. H. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 1966, 31, 110.CrossRefGoogle Scholar