Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T18:58:57.320Z Has data issue: false hasContentIssue false

Optimization of Blocked Designs in FMRI Studies

Published online by Cambridge University Press:  01 January 2025

Bärbel Maus*
Affiliation:
Maastricht University
Gerard J. P. van Breukelen
Affiliation:
Maastricht University
Rainer Goebel
Affiliation:
Maastricht University
Martijn P. F. Berger
Affiliation:
Maastricht University
*
Requests for reprints should be sent to Bärbel Maus, Faculty of Health, Medicine and Life Sciences, Department of Methodology and Statistics, Maastricht University, Maastricht, Netherlands. E-mail: baerbel.maus@stat.unimaas.nl

Abstract

Blocked designs in functional magnetic resonance imaging (fMRI) are useful to localize functional brain areas. A blocked design consists of different blocks of trials of the same stimulus type and is characterized by three factors: the length of blocks, i.e., number of trials per blocks, the ordering of task and rest blocks, and the time between trials within one block. Optimal design theory was applied to find the optimal combination of these three design factors. Furthermore, different error structures were used within a general linear model for the analysis of fMRI data, and the maximin criterion was applied to find designs which are robust against misspecification of model parameters.

Type
Original Paper
Copyright
Copyright © 2010 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, G.K., & D’Esposito, M. (1999). Experimental design for brain fMRI. In Moonen, C.T.W., & Bandettini, P.A. (Eds.), Functional MRI (pp. 369380). Berlin: Springer.Google Scholar
Atkinson, A.C., & Donev, A.N. (1996). Optimum experimental designs, Oxford: Clarendon.Google Scholar
Berger, M.P.F., & Tan, F.E.S. (2004). Robust designs for linear mixed effects model. Applied Statistics, 53(4), 569581.Google Scholar
Binder, J.R., Rao, S.M., Hammeke, T.A., Frost, J.A., Bandettini, P.A., & Hyde, J.S. (1994). Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Cognitive Brain Research, 2, 3138.CrossRefGoogle ScholarPubMed
Birn, R.M., Cox, R.W., & Bandettini, P.A. (2002). Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. NeuroImage, 15, 252264.CrossRefGoogle ScholarPubMed
Boynton, G.M., Engel, S.A., Glover, G.H., & Heeger, D.J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16(13), 42074221.CrossRefGoogle ScholarPubMed
Buckner, R.L., Bandettini, P.A., O’Craven, K.M., Savoy, R.L., Petersen, S.E., Raichle, M.E., & Rosen, B.R. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 93, 1487814883.CrossRefGoogle ScholarPubMed
Bullmore, E., Brammer, M., Williams, S.C.R., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R., & Sham, P. (1996). Statistical methods of estimation and inference for functional MR image analysis. Magnetic Resonance in Medicine, 35, 261277.CrossRefGoogle ScholarPubMed
Buračas, G.T., & Boynton, G.M. (2002). Efficient design of event-related fMRI experiments using M-sequences. NeuroImage, 16, 801813.CrossRefGoogle ScholarPubMed
Burock, M.A., & Dale, A.M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Human Brain Mapping, 11, 249260.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science, 10(3), 273304.CrossRefGoogle Scholar
Chatfield, C. (2003). The Analysis of Time Series: An Introduction, (6th ed.). London/Boca Raton: Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Chein, J.M., Schneider, W. (2003). Designing effective fMRI experiments. In Grafman, J., & Robertson, I. (Eds.), The handbook of neuropsychology, Amsterdam: Elsevier.Google Scholar
Cohen, M.S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93103.CrossRefGoogle ScholarPubMed
Conlisk, J., & Watts, H. (1979). A model for optimizing experimental designs for estimating response surfaces. Journal of Econometrics, 11, 2742.CrossRefGoogle Scholar
Culham, J.C. (2006). Functional neuroimaging: Experimental design and analysis. In Cabeza, R., & Kingstone, A. (Eds.), Handbook of functional neuroimaging of cognition (pp. 5382). Cambridge: MIT Press.Google Scholar
Dale, A.M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109114.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Dale, A.M., & Buckner, R.L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5, 329340.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Dette, H., Martinez Lopez, I., Ortiz Rodriguez, I.M., & Pepelyshev, A. (2006). Maximin efficient design of experiment for exponential regression models. Journal of Statistical Planning and Inference, 136, 43974418.CrossRefGoogle Scholar
Di Salle, F., Formisano, E., Linden, D.E.J., Goebel, R., Bonavita, S., Pepino, A., Smaltino, F., & Tedeschi, G. (1999). Exploring brain function with magnetic resonance imaging. European Journal of Radiology, 30, 8494.CrossRefGoogle ScholarPubMed
Donaldson, D.I., & Buckner, R.L. (2001). Effective paradigm design. In Jezzard, P., Matthews, P.M., & Smith, S.M. (Eds.), Functional MRI: an introduction to methods (pp. 177196). Oxford: Oxford University Press.Google Scholar
Flaherty, P., Jordan, M.I., & Arkin, A.P. (2006). Robust design of biological experiments. In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Advances in neural information processing systems (pp. 363370). Cambridge: MIT Press.Google Scholar
Formisano, E., Esposito, F., Di Salle, F., & Goebel, R. (2004). Cortex-based independent component analysis of fMRI time series. Magnetic Resonance Imaging, 22, 14931504.CrossRefGoogle ScholarPubMed
Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., & Turner, R. (1998). Event-related fMRI: characterizing differential responses. NeuroImage, 7, 3040.CrossRefGoogle ScholarPubMed
Friston, K.J., Holmes, A.P., Poline, J.-B., Grasby, P.J., Williams, S.C.R., Frackowiak, R.S.J., & Turner, R. (1995). Analysis of fMRI time-series revisited. NeuroImage, 2, 4553.CrossRefGoogle ScholarPubMed
Friston, K.J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1, 153171.CrossRefGoogle Scholar
Friston, K.J., Zarahn, E., Josephs, O., Henson, R.N.A., & Dale, A.M. (1999). Stochastic designs in event-related fMRI. NeuroImage, 10, 607619.CrossRefGoogle ScholarPubMed
Gautama, T., & Van Hulle, M.M. (2005). Estimating the global order of the fMRI noise model. NeuroImage, 26, 12111217.CrossRefGoogle ScholarPubMed
Goebel, R., Muckli, L., Zanella, F.E., Singer, W., & Stoerig, P. (2001). Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Research, 41, 14591474.CrossRefGoogle ScholarPubMed
Hagberg, G.E., Zito, G., Patria, F., & Sanes, J.N. (2001). Improved detection of event-related functional MRI signals using probability functions. NeuroImage, 14, 11931205.CrossRefGoogle ScholarPubMed
Heckman, G.M., Bouvier, S.E., Carr, V.A., Harley, E.M., Cardinal, K.S., & Engel, S.A. (2007). Nonlinearities in rapid event-related fMRI explained by stimulus scaling. NeuroImage, 34, 651660.CrossRefGoogle ScholarPubMed
Henson, R.N.A. (2004). Analysis of fMRI time series. In Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.J., Price, C.J., Zeki, S., Ashburner, J., & Penny, W. (Eds.), Human brain function (pp. 793822). Amsterdam: Elsevier.Google Scholar
Honey, G.D., & Bullmore, E.T. (2002). Functional neuroimaging and schizophrenia. Psychiatry, 1, 2629.Google Scholar
Huettel, S.A., & McCarthy, G. (2000). Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. NeuroImage, 11, 547553.CrossRefGoogle ScholarPubMed
Josephs, O., & Henson, R.N.A. (1999). Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philosophical Transactions of the Royal Society B, 354, 12151228.CrossRefGoogle ScholarPubMed
Kao, M.-H., Mandal, A., Lazar, N., & Stufken, J. (2009). Multi-objective optimal experimental designs for event-related fMRI studies. NeuroImage, 44, 849856.CrossRefGoogle ScholarPubMed
Liu, T.T. (2004). Efficiency, power and entropy in event-related fMRI with multiple trial types, part II: design of experiments. Neuroimage, 21, 401413.CrossRefGoogle ScholarPubMed
Liu, T.T., & Frank, L.R. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types, part I: theory. NeuroImage, 21, 387400.CrossRefGoogle ScholarPubMed
Liu, T.T., Frank, L.R., Wong, E.C., & Buxton, R.B. (2001). Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage, 13, 759773.CrossRefGoogle ScholarPubMed
Logothetis, N.K., & Wandell, B.A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735769.CrossRefGoogle ScholarPubMed
Maus, B., van Breukelen, G.J.P., Goebel, R., & Berger, M.P.F. (2010). Robustness of optimal design of fMRI experiments with application of a genetic algorithm. NeuroImage, 49, 24332443.CrossRefGoogle ScholarPubMed
Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., & Buckner, R.L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11, 735759.CrossRefGoogle ScholarPubMed
Mohamed, F.B., Tracy, J.I., Faro, S.H., Emperado, J., Koenigsberg, R., Pinus, A., & Tsai, F.Y. (2000). Investigation of alternating and continuous experimental task designs during single finger opposition fMRI: a comparative study. Journal of Computer Assisted Tomography, 24(6), 935941.CrossRefGoogle ScholarPubMed
Nakai, T., Matsumura, A., Nose, T., Kato, C., Glover, G.H., & Matsuo, K. (2003). The effect of task block arrangement on the detectability of activation in fMRI. Magnetic Resonance Imaging, 21, 941947.CrossRefGoogle ScholarPubMed
Ouwens, M.J.N.M., Tan, F.E.S., & Berger, M.P.F. (2002). Maximin D-optimal designs for longitudinal mixed effects model. Biometrics, 58, 735741.CrossRefGoogle Scholar
Owen, A.M., Epstein, R., & Johnsrude, I.S. (2003). fMRI: applications to cognitive neuroscience. In Jezzard, P., Matthews, P.M., & Smith, S.M. (Eds.), Functional MRI: an introduction to methods (pp. 311327). Oxford: Oxford University Press.CrossRefGoogle Scholar
Pollmann, S., Wiggins, C.J., Norris, D.G., & von Cramon, D.Y., Schubert, T. (1998). Use of short intertrial intervals in single-trial experiments: a 3T fMRI-study. Neuroimage, 8, 327339.CrossRefGoogle ScholarPubMed
Pronzato, L., & Walter, E. (1988). Robust experimental design via maximin optimization. Mathematical Biosciences, 89, 161176.CrossRefGoogle Scholar
Purdon, P.L., & Weisskoff, R.M. (1998). Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Human Brain Mapping, 6, 239249.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Rosen, B.R., Buckner, R.L., & Dale, A.M. (1998). Event-related functional MRI: past, present and future. Proceedings of the National Academy of Sciences, 95, 773780.CrossRefGoogle ScholarPubMed
Silvey, S. (1980). Optimal design, London: Chapman & Hall.CrossRefGoogle Scholar
Sim, R., & Roy, N. (2005). Global A-optimal robot exploration in SLAM. In Proceedings of the IEEE/RSJ international conference of robotics and automation (ICRA 2005) (pp. 661–666).CrossRefGoogle Scholar
Skudlarski, P., Constable, R.T., & Gore, J.C. (1999). ROC analysis of statistical methods used in functional MRI: individual subjects. NeuroImage, 9, 311329.CrossRefGoogle ScholarPubMed
Smith, S., Jenkinson, M., Beckmann, C., Miller, K., & Woolrich, M. (2007). Meaningful design and contrast estimability in FMRI. NeuroImage, 34, 127136.CrossRefGoogle ScholarPubMed
Wager, T.D., & Nichols, T.E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. NeuroImage, 18, 293309.CrossRefGoogle ScholarPubMed
Wager, T.D., Vazquez, A., Hernandez, L., & Noll, D.C. (2005). Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage, 25, 206218.CrossRefGoogle Scholar
Worsley, K.J. (2005). Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis. NeuroImage, 26, 635641.CrossRefGoogle ScholarPubMed
Worsley, K.J., & Friston, K.J. (1995). Analysis of fMRI time-series revisited-again. NeuroImage, 2, 173181.CrossRefGoogle ScholarPubMed
Wüstenberg, T., Giesel, F.L., & Strasburger, H. (2005). Methodische Grundlagen der Optimierung funktioneller MR-Experimente. Radiologe, 45, 99112.CrossRefGoogle Scholar
Zarahn, E., & Friston, K.J. (2002). Some limit results for efficiency in stochastic fMRI designs. Biometrical Journal, 44, 496509.3.0.CO;2-5>CrossRefGoogle Scholar