Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T04:43:27.480Z Has data issue: false hasContentIssue false

Order-Constrained Solutions in K-Means Clustering: Even Better Than Being Globally Optimal

Published online by Cambridge University Press:  01 January 2025

Douglas Steinley*
Affiliation:
University of Missouri-Columbia
Lawrence Hubert
Affiliation:
University of Illinois, Urbana-Champaign
*
Requests for reprints should be sent to Douglas Steinley, Department of Psychological Sciences, University of Missouri-Columbia, 210 McAlester Hall, Columbia, MO 65211, USA. E-mail: steinleyd@missouri.edu

Abstract

This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that although the usual K-means sum-of-squared-error criterion is not guaranteed to be minimal, a true underlying cluster structure may be more accurately recovered. Also, substantive interpretability seems generally improved when constrained solutions are considered. We illustrate the procedure with several data sets from the literature.

Type
Theory and Methods
Copyright
Copyright © 2008 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Sultan, K. (1995). A tabu search approach to the clustering problem. Pattern Recognition, 28, 14431451.CrossRefGoogle Scholar
Babu, G.P., & Murty, M.N. (1994). Simulated annealing for selecting optimal initial seeds in the K-means algorithm. Indian Journal of Pure and Applied Mathematics, 25, 8594.Google Scholar
Baker, F.B., & Hubert, L.J. (1977). Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 30, 154164.CrossRefGoogle Scholar
Brusco, M.J., & Cradit, J.D. (2004). Graph coloring, mimimum-diameter partitioning, and the analysis of confusion matrices. Journal of Mathematical Psychology, 48, 301309.CrossRefGoogle Scholar
Brusco, M.J., & Cradit, J.D. (2005). Bicriterion methods for partitioning dissimilarity matrices. British Journal of Mathematical and Statistical Psychology, 58, 319332.CrossRefGoogle ScholarPubMed
Brusco, M.J., & Stahl, S. (2001). An interactive multiobjective programming approach to combinatorial data analysis. Psychometrika, 66, 524.CrossRefGoogle Scholar
Brusco, M.J., & Stahl, S. (2001). Compact integer-programming models for extracting subsets of stimuli from confusion matrices. Psychometrika, 66, 405420.CrossRefGoogle Scholar
Brusco, M.J., & Stahl, S. (2005). Branch-and-bound applications in combinatorial data analysis, New York: Springer.Google Scholar
Chang, W.C. (1983). On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267275.CrossRefGoogle Scholar
Delattre, M., & Hansen, P. (1980). Bicriterion cluster analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 277291.CrossRefGoogle ScholarPubMed
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179188.CrossRefGoogle Scholar
Fisher, W.D. (1958). On grouping for maximum heterogeneity. Journal of the American Statistical Association, 53, 789798.CrossRefGoogle Scholar
Forgy, E.W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768769.Google Scholar
Hansen, P., & Mladenovic, N. (2001). J-Means: A new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34, 405413.CrossRefGoogle Scholar
Hartigan, J. (1975). Clustering algorithms, New York: Wiley.Google Scholar
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.CrossRefGoogle Scholar
Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic programming, Philadelphia: SIAM.CrossRefGoogle Scholar
Hubert, L., Arabie, P., & Meulman, J. (2006). The structural representation of proximity matrices with MATLAB, Philadelphia: SIAM.CrossRefGoogle Scholar
Kiplinger’s personal finance. In Kiplinger’s personal finance (Vol. 57, pp. 104–123).Google Scholar
MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In Le Cam, L.M., & Neyman, J. (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281297). University of California Press: Berkeley.Google Scholar
Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325342.CrossRefGoogle Scholar
Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159179.CrossRefGoogle Scholar
Milligan, G.W., & Cooper, M.C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181204.CrossRefGoogle Scholar
Mirkin, B. (2005). Clustering for data mining, New York: Chapman & Hall.CrossRefGoogle Scholar
Pacheco, J., & Valencia, O. (2003). Design of hybrids for the minimum sum-of-squares clustering problem. Computational Statistics and Data Analysis, 43, 235248.CrossRefGoogle Scholar
Späth, H. (1980). Cluster analysis algorithms, Chichester: Ellis Horwood.Google Scholar
Steinley, D. (2003). K-means clustering: What you don’t know may hurt you. Psychological Methods, 8, 294304.CrossRefGoogle ScholarPubMed
Steinley, D. (2004). Standardizing variables in K-means clustering. In Banks, D., House, L., McMorris, F.R., Arabie, P., & Gaul, W. (Eds.), Classification, clustering, and data mining applications (pp. 5360). New York: Springer.CrossRefGoogle Scholar
Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386396.CrossRefGoogle ScholarPubMed
Steinley, D. (2006). K-means clustering: A half-century synthesis. British Journal of Mathematical and Statistical Psychology, 59, 134.CrossRefGoogle ScholarPubMed
Steinley, D. (2006). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods, 11, 178192.CrossRefGoogle ScholarPubMed
Steinley, D., & Brusco, M.J. (2007). Initializing K-means batch clustering: A critical evaluation of several techniques. Journal of Classification, 24, 99121.CrossRefGoogle Scholar
Steinley, D., & Brusco, M.J. (2008, in press). A new variable weighting and selection procedure for K-means cluster analysis. Multivariate Behavioral Research.CrossRefGoogle Scholar
Steinley, D., & Henson, R. (2005). OCLUS: An analytic method for generating clusters with known overlap. Journal of Classification, 22, 221250.CrossRefGoogle Scholar
Theise, E.S. (1989). Finding a subset of stimulus-response pairs with minimum total confusion: A binary integer programming approach. Human Factors, 31, 291305.CrossRefGoogle Scholar
Thorndike, R.L. (1953). Who belongs in the family?. Psychometrika, 18, 267276.CrossRefGoogle Scholar
Van Ness, J.W. (1973). Admissible clustering procedures II. Biometrika, 60, 422424.CrossRefGoogle Scholar