Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T06:53:55.468Z Has data issue: true hasContentIssue false

Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences

Published online by Cambridge University Press:  01 January 2025

Terry Elrod
Affiliation:
University of Alberta
Gerald Häubl
Affiliation:
University of Alberta
Steven W. Tipps
Affiliation:
Fox River Research

Abstract

Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are specified in a manner that is highly data dependent. This article introduces methods for developing parsimonious models for such data. The underlying technology uses reduced-rank representations of the variances, covariances and means of observed and latent variables. The value of this approach, which may be implemented using standard structural equation modeling software, is illustrated in an application study aimed at understanding heterogeneous consumer preferences. In this application, the parsimonious representations characterize systematic relationships among consumer demographics, attitudes and preferences that would otherwise be undetected. The result is a model that is parsimonious, illuminating, and fits the data well, while keeping data dependence to a minimum.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716723CrossRefGoogle Scholar
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317332CrossRefGoogle Scholar
Allenby, G.M., Rossi, P.E. (1999). Marketing models of consumer heterogeneity. Journal of Econometrics, 89, 5778CrossRefGoogle Scholar
Ansari, A., Jedidi, K., Jagpal, S. (2000). A hierarchical Bayesian methodology for treating heterogeneity in structural equation models. Marketing Science, 19, 328347CrossRefGoogle Scholar
Arminger, G., Muthén, B.O. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika, 63, 271300CrossRefGoogle Scholar
Arminger, G., Stein, P., Wittenberg, J. (1999). Mixtures of conditional mean- and covariance-structure models. Psychometrika, 64(4), 475494CrossRefGoogle Scholar
Bartoshuk, L.M., Beauchamp, G.K. (1994). Chemical senses. Annual Review of Psychology, 45, 419449CrossRefGoogle ScholarPubMed
Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., Munizaga, M.A. (2002). Hybrid choice models: Progress and challenges. Marketing Letters, 13(3), 163175CrossRefGoogle Scholar
Böckenholt, U., Tsai, R.-C. (2007). Random-effects models for preference data. In Rao, C.R., Sinharay, S. Psychometrics, Amsterdam: North-Holland 447468Google Scholar
Bollen, K.A. (1989). Structural equations with latent variables, New York: WileyCrossRefGoogle Scholar
Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC)—the general-theory and its analytical extensions. Psychometrika, 52(3), 345370CrossRefGoogle Scholar
Browne, M.W., Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24, 445455CrossRefGoogle ScholarPubMed
Browne, M.W., Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen, K.A., Long, J.S. Testing structural equation models, Newbury Park: Sage 136162Google Scholar
Browne, M.W., Du Toit, S. (1991). Models for learning data. In Collins, L., Horn, J. Best methods for the analysis of change, Washington: APA 4768Google Scholar
Bucklin, R.E., Gupta, S., Han, S. (1995). A brands eye view of response segmentation in consumer brand choice behavior. Journal of Marketing Research, 32(1), 6674CrossRefGoogle Scholar
Bura, E., Cook, R.D. (2003). Rank estimation in reduced-rank regression. Journal of Multivariate Analysis, 87, 159176CrossRefGoogle Scholar
Cattell, R.B. (1988). Psychological theory and scientific method. In Nesselroade, J.R., Cattell, R.B. Handbook of multivariate experimental psychology, (2rd ed.). New York: Plenum 118Google Scholar
Charemza, W.W., Deadman, D.F. (1992). New directions in econometric practice, Elgar: AldershotGoogle Scholar
Dayton, C.M., Macready, G.B. (2007). Latent class analysis in psychometrics. In Rao, C.R., Sinharay, S. Psychometrics, Amsterdam: North-Holland 421446Google Scholar
DeSarbo, W.S., Fong, D.K.H., Liechty, J., Coupland, J.C. (2005). Evolutionary preference/utility functions: A dynamic perspective. Psychometrika, 70(1), 179202CrossRefGoogle Scholar
Diener, E., Oishi, S., Lucas, R.E. (2003). Personality, culture, and subjective well-being: Emotional and cognitive evaluations of life. Annual Review of Psychology, 54, 403425CrossRefGoogle ScholarPubMed
Dillon, W.R., Kumar, A., Mulani, N. (1987). Offending estimates in covariance structure analysis: Comments on the causes of and solutions to Heywood cases. Psychological Bulletin, 101, 126135CrossRefGoogle Scholar
Dolan, C.V. (2009). Structural equation mixture modeling. In Millsap, R.E., Maydeu-Olivares, A. The SAGE handbook of quantitative methods in psychology, Thousand Oaks: Sage 568591CrossRefGoogle Scholar
Duncan, T.E., Duncan, S.C. (2004). An introduction to latent growth curve modeling. Behavior Therapy, 35(2), 333363CrossRefGoogle Scholar
Dyer, J.S. (2005). MAUT—multiattribute utility theory. In Figueira, J., Greco, S., Ehrgott, M. Multiple criteria decision analysis: state of the art surveys, New York: Springer 265295CrossRefGoogle Scholar
Elrod, T., Russell, G.J., Shocker, A.D., Andrews, R.L., Bacon, L., Bayus, B.L., Shankar, V. (2002). Inferring market structure from customer response to competing and complementary products. Marketing Letters, 13(3), 221232CrossRefGoogle Scholar
Fennell, G., Allenby, G.M., Yang, S., Edwards, Y. (2003). The effectiveness of demographic and psychographic variables for explaining brand and product category use. Quantitative Marketing and Economics, 1, 223244CrossRefGoogle Scholar
Gustafsson, A., Herrmann, A., Huber, F. (2007). Conjoint measurement: methods and applications, (4rd ed.). Berlin: SpringerCrossRefGoogle Scholar
Hamaker, E.L., van Hattum, P., Kuiper, R.M., Hoijtink, H. (2011). Model selection based on information criteria in multilevel modeling. In Hox, J.J., Roberts, J.K. Handbook of advanced multilevel analysis, New York: Routledge 231255Google Scholar
Hannan, E.J., Quinn, B.G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society. Series B. Methodological, 41, 190195CrossRefGoogle Scholar
Harville, D.A. (1997). Matrix algebra from a statistician’s perspective, New York: SpringerCrossRefGoogle Scholar
Haughton, D.M.A. (1988). On the choice of a model to fit data from an exponential family. Annals of Statistics, 16(1), 342355CrossRefGoogle Scholar
Hoffman, L., Rovine, M. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative examples. Behavior Research Methods, 39(1), 101117CrossRefGoogle ScholarPubMed
Hox, J.J., Roberts, J.K. (2011). Multilevel analysis: Where we were and where we are. In Hox, J.J., Roberts, J.K. Handbook of advanced multilevel analysis, New York: Routledge 111CrossRefGoogle Scholar
Hox, J.J., Roberts, J.K. (2011). Handbook of advanced multilevel analysis, New York: RoutledgeCrossRefGoogle Scholar
Hwang, H., Takane, Y. (2004). A multivariate reduced-rank growth curve model with unbalanced data. Psychometrika, 69(1), 6579CrossRefGoogle Scholar
Hwang, H., Takane, Y. (2005). An extended multivariate random-effects growth curve model. Behaviormetrika, 32(2), 141153CrossRefGoogle Scholar
Izenman, A.J. (1975). Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5, 248264CrossRefGoogle Scholar
Jedidi, K., Jagpal, H.S., DeSarbo, W.S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 3959CrossRefGoogle Scholar
Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443482CrossRefGoogle Scholar
Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183202CrossRefGoogle Scholar
Jöreskog, K.G. (1993). Testing structural equation models. In Bollen, K.A., Long, J.S. Testing structural equation models, Newbury Park: Sage 294316Google Scholar
Jöreskog, K.G., Sörbom, D. (1996). LISREL 8 user’s reference guide, Chicago: Scientific SoftwareGoogle Scholar
Kahneman, D., Diener, E., Schwarz, N. (1999). Well-being: the foundations of hedonic psychology, New York: SageGoogle Scholar
Kano, Y. (2001). Structural equation modeling for experimental data. In Cudeck, R., Du Toit, S., Sörbom, D. Structural equation modeling: present and future, Lincolnwood: Scientific Software International 381402Google Scholar
Kaplan, D., Kim, J.-S., Kim, S.-Y. (2009). Multilevel latent variable modeling: Current research and recent developments. In Millsap, R.E., Maydeu-Olivares, A. The SAGE handbook of quantitative methods in psychology, Thousand Oaks: Sage 592612CrossRefGoogle Scholar
Kaul, A., Rao, V.R. (1995). Research for product positioning and design decisions: An integrative review. International Journal of Research in Marketing, 12, 293320CrossRefGoogle Scholar
Kim, J.-S. (2009). Multilevel analysis: An overview and some contemporary issues. In Millsap, R.E., Maydeu-Olivares, A. The SAGE handbook of quantitative methods in psychology, Thousand Oaks: Sage 337361CrossRefGoogle Scholar
Kreft, I.G.G., de Leeuw, J., Aiken, L.S. (1995). The effect of different forms of centering in hierarchical linear models. Multivariate Behavioral Research, 30, 121CrossRefGoogle ScholarPubMed
Lancaster, K.J. (1966). New approach to consumer theory. Journal of Political Economy, 74(2), 132157CrossRefGoogle Scholar
Lancaster, K.J. (1979). Variety, equity, and efficiency, New York: Columbia University PressCrossRefGoogle Scholar
Lawrence, F.R., Hancock, G.R. (1998). Assessing change over time using latent growth modeling. Measurement and Evaluation in Counseling and Development, 30, 211224CrossRefGoogle Scholar
Lenk, P.J., Desarbo, W.S., Green, P.E., Young, M.R. (1996). Hierarchical Bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental design. Marketing Science, 15(2), 173191CrossRefGoogle Scholar
Longford, N.T. (1993). Random coefficient models, Oxford: ClarendonGoogle Scholar
MacCallum, R.C., Roznowski, M., Necowitz, L.B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490504CrossRefGoogle ScholarPubMed
Marsh, H.W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A.J.S., Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students’ evaluations of university teaching. Structural Equation Modeling, 16(3), 439476CrossRefGoogle Scholar
Mason, R.L., Gunst, R.F., Hess, J.L. (2003). Statistical design and analysis of experiments, (2rd ed.). Hoboken: WileyCrossRefGoogle Scholar
Maydeu-Olivares, A., Böckenholt, U. (2009). Modeling preference data. In Millsap, R.E., Maydeu-Olivares, A. The SAGE handbook of quantitative methods in psychology, Thousand Oaks: Sage 264282CrossRefGoogle Scholar
McArdle, J.J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577605CrossRefGoogle ScholarPubMed
McCrae, R.R., Costa, P.T. (2003). Personality in adulthood: A five-factor theory perspective, New York: Guilford PressCrossRefGoogle Scholar
McCulloch, C.E., Searle, S.R. (2001). Generalized, linear, and mixed models, Hoboken: WileyGoogle Scholar
Mehta, P.D., Neale, M.C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10(3), 259284CrossRefGoogle ScholarPubMed
Meredith, W., Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107122CrossRefGoogle Scholar
Mood, A.M., Graybill, F.A., Boes, D.C. (1974). Introduction to the theory of statistics, New York: McGraw-HillGoogle Scholar
Muthén, B.O. (1994). Multilevel covariance structure analysis. Sociological Methods & Research, 22, 376398CrossRefGoogle Scholar
Muthén, B.O., Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. In Hox, J.J., Roberts, J.K. Handbook of advanced multilevel analysis, New York: Routledge 1540Google Scholar
Muthén, L.K., Muthén, B.O. (2010). Mplus user’s guide, (6rd ed.). Los Angeles: Muthén & MuthénGoogle Scholar
Neale, M.C., Boker, S.M., Xie, G., Maes, H.H. (2003). Mx: Statistical modeling, (6rd ed.). Richmond: Virginia Commonwealth UniversityGoogle Scholar
Netzer, O., Toubia, O., Bradlow, E., Dahan, E., Evgeniou, T., Feinberg, F., Feit, E., Hui, S., Johnson, J., Liechty, J., Orlin, J., Rao, V.R. (2008). Beyond conjoint analysis: Advances in preference measurement. Marketing Letters, 19, 337354CrossRefGoogle Scholar
Ogasawara, H. (2002). Exploratory second-order analyses for components and factors. Japanese Psychological Research, 44(1), 919CrossRefGoogle Scholar
Oravecz, Z., Tuerlinckx, F., Vandekerckhove, J. (2009). A hierarchical Ornstein–Uhlenbeck model for continuous repeated measurement data. Psychometrika, 74(3), 395418CrossRefGoogle Scholar
Orme, B. (2006). Getting started with conjoint analysis: Strategies for product design and pricing research, Madison: Research Publishers LLCGoogle Scholar
Oxford, M.L., Gilchrist, L.D., Morrison, D.M., Gillmore, M.R., Lohr, M.J., Lweis, S.M. (2003). Alcohol use among adolescent mothers: Heterogeneity in growth curves, predictors, and outcomes of alcohol use over time. Prevention Science, 4, 1526CrossRefGoogle ScholarPubMed
Pekelman, D., Sen, S.K. (1979). Improving prediction in conjoint measurement. Journal of Marketing Research, 16(2), 211220CrossRefGoogle Scholar
Perrett, D.I., May, K.A., Yoshikawa, S. (1994). Facial shape and judgments of female attractiveness. Nature, 368, 239242CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1986). Numerical recipes, Cambridge: Cambridge University PressGoogle Scholar
Raftery, A.E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111163CrossRefGoogle Scholar
Raftery, A.E. (1995). Rejoinder: Model selection is unavoidable in social research. Sociological Methodology, 25, 185195CrossRefGoogle Scholar
Rao, C.R. (2007). Some matrix results useful in psychometric research. In Rao, C.R., Sinharay, S. Psychometrics, Amsterdam: North-Holland 235255Google Scholar
Ratkowsky, D.A. (1990). Handbook of nonlinear regression models, New York: DekkerGoogle Scholar
Raudenbush, S.W., Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods, (2rd ed.). Thousand Oaks: SageGoogle Scholar
Raudenbush, S.W., Bryk, A.S., Congdon, R. (2004). HLM 6 for Windows, Lincolnwood: Scientific Software InternationalGoogle Scholar
Reinsel, G.C., Velu, R.P. (1998). Multivariate reduced-rank regression, New York: SpringerCrossRefGoogle Scholar
Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annual Review of Psychology, 57, 199226CrossRefGoogle ScholarPubMed
Ross, G.J.S. (1990). Nonlinear estimation, New York: SpringerCrossRefGoogle Scholar
Rossi, P.E., McCulloch, R.E., Allenby, G.M. (1996). The value of purchase history data in target marketing. Marketing Science, 15(4), 321340CrossRefGoogle Scholar
Rovine, M.J., Molenaar, P.C.M. (1998). A LISREL model for the analysis of repeated measures with a patterned covariance matrix. Structural Equation Modeling, 5(4), 318343CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461464CrossRefGoogle Scholar
Sclove, S.L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333343CrossRefGoogle Scholar
Shocker, A.D., Srinivasan, V. (1979). Multiattribute approaches for product concept evaluation and generation: A critical review. Journal of Marketing Research, 16(2), 159180CrossRefGoogle Scholar
Shores, T.S. (2007). Applied linear algebra and matrix analysis, New York: SpringerCrossRefGoogle Scholar
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 64(4), 583640CrossRefGoogle Scholar
Steele, F., Goldstein, H. (2007). Multilevel models in psychometrics. In Rao, C.R., Sinharay, S. Psychometrics, Amsterdam: North-Holland 401420Google Scholar
Steiger, J.H., & Lind, J.M. (1980). Statistically based tests for the number of common factors. Paper presented at the Annual Meeting of the Psychometric Society. Google Scholar
Stoel, R.D., Galindo Garre, F. (2011). Growth curve analysis using multilevel regression and structural equation modeling. In Hox, J.J., Roberts, J.K. Handbook of advanced multilevel analysis, New York: Routledge 97111Google Scholar
Stoolmiller, M. (1995). Using latent growth curve models to study developmental processes. In Gottman, J.M. The analysis of change, Mahwah: Erlbaum 103138Google Scholar
Stoolmiller, M., Bank, L. (1995). Autoregressive effects in structural equation models: We see some problems. In Gottman, J.M. The analysis of change, Mahwah: Erlbaum 261278Google Scholar
Susini, P., McAdams, S., Winsberg, S. (1999). A multidimensional technique for sound quality assessment. Acta Acustica, 85(5), 650656Google Scholar
Swamy, P.A.V.B. (1970). Efficient inference in a random coefficient regression model. Econometrica, 38(2), 311323CrossRefGoogle Scholar
Vaida, F., Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92(2), 351370CrossRefGoogle Scholar
Wall, M.M. (2009). Maximum likelihood and Bayesian estimation for nonlinear structural equation models. In Millsap, R.E., Maydeu-Olivares, A. The SAGE handbook of quantitative methods in psychology, Thousand Oaks: Sage 540567CrossRefGoogle Scholar
Yanai, H., Ichikawa, M. (2007). Factor analysis. In Rao, C.R., Sinharay, S. Psychometrics, Amsterdam: North-Holland 257296Google Scholar
Yuan, K.-H., Bentler, P.M. (2007). Structural equation modeling. In Rao, C.R., Sinharay, S. Psychometrics, Amsterdam: North-Holland 297358Google Scholar