Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T17:59:35.667Z Has data issue: false hasContentIssue false

Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data

Published online by Cambridge University Press:  01 January 2025

Zachary F. Fisher*
Affiliation:
The Pennsylvania State University
Younghoon Kim
Affiliation:
University of North Carolina at Chapel Hill
Barbara L. Fredrickson
Affiliation:
University of North Carolina at Chapel Hill
Vladas Pipiras
Affiliation:
University of North Carolina at Chapel Hill
*
Correspondence should be made to Zachary F. Fisher, The Pennsylvania State University, Pennsylvania, USA. Email: fish.zachary@gmail.com

Abstract

Intensive longitudinal data (ILD) is an increasingly common data type in the social and behavioral sciences. Despite the many benefits these data provide, little work has been dedicated to realize the potential such data hold for forecasting dynamic processes at the individual level. To address this gap in the literature, we present the multi-VAR framework, a novel methodological approach allowing for penalized estimation of ILD collected from multiple individuals. Importantly, our approach estimates models for all individuals simultaneously and is capable of adaptively adjusting to the amount of heterogeneity present across individual dynamic processes. To accomplish this, we propose a novel proximal gradient descent algorithm for solving the multi-VAR problem and prove the consistency of the recovered transition matrices. We evaluate the forecasting performance of our method in comparison with a number of benchmark methods and provide an illustrative example involving the day-to-day emotional experiences of 16 individuals over an 11-week period.

Type
Theory and Methods
Copyright
copyright © 2021 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. G., Morzuch, B. J. (2006). Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?. International Journal of Forecasting, 22(3), 475492.CrossRefGoogle Scholar
Bańbura, M.,Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics,25(1),7192.CrossRefGoogle Scholar
Basu, S., & Michailidis, G. (2015a). Regularized estimation in sparse high-dimensional time series models. Annals of Statistics, 43(4), 1535–1567.CrossRefGoogle Scholar
Basu, S., & Michailidis, G. (2015b). Supplement to “Regularized estimation in sparse high-dimensional time series models”. Annals of Statistics, 43(4), 1535–1567.CrossRefGoogle Scholar
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences,2(1),183202.CrossRefGoogle Scholar
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences: An International Journal,191,192213.CrossRefGoogle Scholar
Bergmeir, C.,Costantini, M., & Benítez, J. M. (2014). On the usefulness of cross-validation for directional forecast evaluation. Computational Statistics & Data Analysis,76,132143.CrossRefGoogle Scholar
Bergmeir, C.,Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics & Data Analysis,120,7083.CrossRefGoogle Scholar
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRefGoogle Scholar
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188.CrossRefGoogle Scholar
Bulteel, K.,Mestdagh, M.,Tuerlinckx, F., & Ceulemans, E. (2018). Var(1) based models do not always outpredict AR(1) models in typical psychological applications. Psychological Methods,23(4),740CrossRefGoogle Scholar
Bulteel, K.,Tuerlinckx, F.,Brose, A., & Ceulemans, E. (2018). Improved insight into and prediction of network dynamics by combining Var and dimension reduction. Multivariate Behavioral Research,53(6),853875.CrossRefGoogle ScholarPubMed
Cerqueira, V.,Torgo, L., & Mozetič, I. (2020). Evaluating time series forecasting models: An empirical study on performance estimation methods. Machine Learning,109(11),19972028.CrossRefGoogle Scholar
Chen, M., Chow, S. -M., Hammal, Z., Messinger, D. S., & Cohn, J. F. (2020). A person- and time-varying vector autoregressive model to capture interactive infant–mother head movement dynamics. Multivariate Behavioral Research, 56(5), 739–767.CrossRefGoogle Scholar
Epskamp, S.,Waldorp, L. J.,Mõttus, R., & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453480.CrossRefGoogle ScholarPubMed
Fisher, Z. F. (2021). multivar: Penalized estimation and forecasting of multiple subject vector autoregressive (multi-VAR) models. R package version 1.0.0. https://CRAN.R-project.org/package=multivar.Google Scholar
Fisher, Z. F., Chow, S.-M., Molenaar, P. C. M., Fredrickson, B. L., Pipiras, V., & Gates, K. M. (2020). A square-root second-order extended Kalman filtering approach for estimating smoothly time-varying parameters. Multivariate Behavioral Research, 1–19.Google Scholar
Fredrickson, B. L. (2013). Chapter One—Positive emotions broaden and build. In P. Devine & A. Plant (Eds.), Advances in experimental social psychology (Vol. 47, pp. 1–53). Academic Press.Google Scholar
Fredrickson, B. L., Boulton, A. J., Firestine, A. M., Van Cappellen, P., Algoe, S. B., Brantley, M. M., Kim, S. L., Brantley, J., & Salzberg, S. (2017). Positive emotion correlates of meditation practice: A comparison of mindfulness meditation and loving-kindness meditation. Mindfulness, 8(6), 1623–1633.CrossRefGoogle Scholar
Friedman, J. H.,Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 122.CrossRefGoogle ScholarPubMed
Gates, K. M., & Molenaar, P. C. M (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310319.CrossRefGoogle ScholarPubMed
Groen, R. N.,Snippe, E.,Bringmann, L. F.,Simons, C. J. P.,Hartmann, J. A.,Bos, E. H., & Wichers, M. (2019). Capturing the risk of persisting depressive symptoms: A dynamic network investigation of patients’ daily symptom experiences. Psychiatry Research, 271 640648.CrossRefGoogle ScholarPubMed
Gross, S. M., & Tibshirani, R. (2016). Data shared lasso: A novel tool to discover uplift. Computational Statistics & Data Analysis, 101 226235.CrossRefGoogle Scholar
Han, F., & Liu, H. (2013). Transition matrix estimation in high dimensional time series. In International conference on machine learning (pp. 172–180).Google Scholar
Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations. CRC Press.CrossRefGoogle Scholar
Ji, L.,Chow, S-M,Crosby, B., & Teti, D. M. (2020). Exploring sleep dynamic of mother–infant dyads using a regime-switching vector autoregressive model. Multivariate Behavioral Research, 55(1), 150151.CrossRefGoogle ScholarPubMed
Kock, A. B.,Callot, L. (2015). Oracle inequalities for high dimensional vector autoregressions. Journal of Econometrics, 186(2), 325344.CrossRefGoogle Scholar
Lane, S., Gates, K., Fisher, Z., Arizmendi, C., & Molenaar, P. (2019). gimme: Group iterative multiple model estimation. R package version 0.6-1.Google Scholar
Li, J.,Chen, W. (2014). Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models. International Journal of Forecasting, 30(4), 9961015.CrossRefGoogle Scholar
Loh, P.-L., & Wainwright, M. J. (2012a). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity. Annals of Statistics, 40(3), 1637–1664.CrossRefGoogle Scholar
Loh, P.-L., & Wainwright, M. J. (2012b). Supplement to “High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity”. Annals of Statistics, 40(3), 1637–1664.CrossRefGoogle Scholar
Lütkepohl, H. (2007). New introduction to multiple time series analysis. Springer.Google Scholar
Medeiros, M. C., & Mendes, E. F. l \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcalligra {l}$$\end{document} 1-Regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors (2016). Journal of Econometrics, 191(1), 255271.CrossRefGoogle Scholar
Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50(2), 181202.CrossRefGoogle Scholar
Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. Technical Report 2007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).Google Scholar
Nicholson, W. B.,Matteson, D. S., & Bien, J. (2017). VARX-L: Structured regularization for large vector autoregressions with exogenous variables. International Journal of Forecasting, 33(3), 627651.CrossRefGoogle Scholar
Ollier, E., & Viallon, V. (2014). Joint estimation of K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} related regression models with simple L 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} -norm penalties. arXiv:1411.1594 [stat].Google Scholar
Ollier, E., & Viallon, V. (2017). Regression modelling on stratified data with the lasso. Biometrika, 104(1), 8396.Google Scholar
Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in Optimization, 1(3), 127239.CrossRefGoogle Scholar
Polson, N. G.,Scott, J. G., & Willard, B. T. (2015). Proximal algorithms in statistics and machine learning. Statistical Science, 30(4), 559581.CrossRefGoogle Scholar
Robertson, J. C., & Tallman, E. W. (2001). Improving federal-funds rate forecasts in VAR models used for policy analysis. Journal of Business & Economic Statistics, 19(3), 324330.CrossRefGoogle Scholar
Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 148.CrossRefGoogle Scholar
Song, S., & Bickel, P. J. (2011). Large vector auto regressions. arXiv:1106.3915 [q-fin, stat].Google Scholar
Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 11671179.CrossRefGoogle Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267288.CrossRefGoogle Scholar
Wild, B.,Eichler, M.,Friederich, H. -C.,Hartmann, M.,Zipfel, S., & Herzog, W. (2010). A graphical vector autoregressive modeling approach to the analysis of electronic diary data. BMC Medical Research Methodology, 10(1), 28CrossRefGoogle Scholar
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57(298), 348368.CrossRefGoogle Scholar
Zheng, Y.,Wiebe, R. P.,Cleveland, H. H.,Molenaar, P. C. M., & Harris, K. S. (2013). An idiographic examination of day-to-day patterns of substance use craving, negative affect, and tobacco use among young adults in recovery. Multivariate Behavioral Research, 48(2), 241266.CrossRefGoogle ScholarPubMed
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 14181429.CrossRefGoogle Scholar