Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:31:25.889Z Has data issue: true hasContentIssue false

A Penalty Approach to Differential Item Functioning in Rasch Models

Published online by Cambridge University Press:  01 January 2025

Gerhard Tutz*
Affiliation:
Ludwig-Maximilians-Universität
Gunther Schauberger
Affiliation:
Ludwig-Maximilians-Universität
*
Requests for reprints should be sent to Gerhard Tutz, Department of Statistics, Ludwig-Maximilians-Universität, Munich, Germany. E-mail: gerhard.tutz@stat.uni-muenchen.de

Abstract

A new diagnostic tool for the identification of differential item functioning (DIF) is proposed. Classical approaches to DIF allow to consider only few subpopulations like ethnic groups when investigating if the solution of items depends on the membership to a subpopulation. We propose an explicit model for differential item functioning that includes a set of variables, containing metric as well as categorical components, as potential candidates for inducing DIF. The ability to include a set of covariates entails that the model contains a large number of parameters. Regularized estimators, in particular penalized maximum likelihood estimators, are used to solve the estimation problem and to identify the items that induce DIF. It is shown that the method is able to detect items with DIF. Simulations and two applications demonstrate the applicability of the method.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agresti, A. (2002). Categorical data analysis. New York: Wiley.CrossRefGoogle Scholar
Andersen, E. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183202.CrossRefGoogle Scholar
Bondell, H., Krishna, A., & Ghosh, S. (2010). Joint variable selection for fixed and random effects in linear mixed-effects models. Biometrics, 1069–1077.CrossRefGoogle Scholar
Breiman, L. (2001). Random forests. Machine Learning, 45, 532.CrossRefGoogle Scholar
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, J.C. (1984). Classification and regression trees. Monterey: Wadsworth.Google Scholar
Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting (with discussion). Statistical Science, 22, 477505.Google Scholar
Eilers, P.H.C., & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89121.CrossRefGoogle Scholar
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalize likelihood and its oracle properties. Journal of the American Statistical Association, 96, 13481360.CrossRefGoogle Scholar
Friedman, J.H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 122.CrossRefGoogle ScholarPubMed
Fu, W.J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7, 397416.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J.H. (2009). The elements of statistical learning (2nd ed.). New York: Springer.CrossRefGoogle Scholar
Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: bias estimation for nonorthogonal problems. Technometrics, 12, 5567.CrossRefGoogle Scholar
Holland, P.W., & Thayer, D.T. (1988). Differential item performance and the Mantel-Haenszel procedure. Test validity, 129145.Google Scholar
Holland, W., & Wainer, H. (1993). Differential item functioning. Mahwah: Lawrence Erlbaum Associates.Google Scholar
Kim, S.-H., Cohen, A.S., & Park, T.-H. (1995). Detection of differential item functioning in multiple groups. Journal of Educational Measurement, 32(3), 261276.CrossRefGoogle Scholar
Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of Statistics, 1356–1378.Google Scholar
LeCessie, . (1992). Ridge estimators in logistic regression. Applied Statistics, 41(1), 191201.Google Scholar
Lord, F.M. (1980). Applications of item response theory to practical testing problems. London: Routledge.Google Scholar
Magis, D., Beland, S., & Raiche, G. (2013). difR: collection of methods to detect dichotomous differential item functioning (DIF) in psychometrics. R package version 4.4.Google Scholar
Magis, D., Bèland, S., Tuerlinckx, F., & Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42(3), 847862.CrossRefGoogle Scholar
Magis, D., Raîche, G., Béland, S., & Gérard, P. (2011). A generalized logistic regression procedure to detect differential item functioning among multiple groups. International Journal of Testing, 11(4), 365386.CrossRefGoogle Scholar
Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: the erm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 120.CrossRefGoogle Scholar
Mair, P., Hatzinger, R., & Maier, M.J. (2012). eRm: extended Rasch modeling. R package version 0.15-0.Google Scholar
Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719748.Google ScholarPubMed
Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149174.CrossRefGoogle Scholar
McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). New York: Chapman & Hall.CrossRefGoogle Scholar
Meier, L. (2009). grplasso: fitting user specified models with Group Lasso penalty. R package version 0.4-2.Google Scholar
Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society. Series B, 70, 5371.CrossRefGoogle Scholar
Merkle, E.C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups: a generalization of classical methods. Psychometrika, 78, 5982.CrossRefGoogle ScholarPubMed
Millsap, R., & Everson, H. (1993). Methodology review: statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17(4), 297334.CrossRefGoogle Scholar
Ni, X., Zhang, D., & Zhang, H.H. (2010). Variable selection for semiparametric mixed models in longitudinal studies. Biometrics, 66, 7988.CrossRefGoogle ScholarPubMed
Nyquist, H. (1991). Restricted estimation of generalized linear models. Applied Statistics, 40, 133141.CrossRefGoogle Scholar
Osborne, M., Presnell, B., & Turlach, B. (2000). On the lasso and its dual. Journal of Computational and Graphical Statistics, 9(2), 319337.CrossRefGoogle Scholar
Osterlind, S., & Everson, H. (2009). Differential item functioning. Thousand Oaks: Sage Publications, Inc..CrossRefGoogle Scholar
Park, M.Y., & Hastie, T. (2007). An l1 regularization-path algorithm for generalized linear models. Journal of the Royal Statistical Society. Series B, 69, 659677.CrossRefGoogle Scholar
Penfield, R.D. (2001). Assessing differential item functioning among multiple groups: a comparison of three Mantel-Haenszel procedures. Applied Measurement in Education, 14(3), 235259.CrossRefGoogle Scholar
R Core Team (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Raju, N.S. (1988). The area between two item characteristic curves. Psychometrika, 53(4), 495502.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
Rogers, H. (2005). Differential item functioning. Encyclopedia of statistics in behavioral science,.CrossRefGoogle Scholar
Samejima, F. (1997). Graded response model. Handbook of modern item response theory, 85100.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics. Theory and Methods, 21, 22272246.CrossRefGoogle Scholar
Soares, T., Gonçalves, F., & Gamerman, D. (2009). An integrated Bayesian model for dif analysis. Journal of Educational and Behavioral Statistics, 34(3), 348377.CrossRefGoogle Scholar
Somes, G.W. (1986). The generalized Mantel–Haenszel statistic. American Statistician, 40(2), 106108.Google Scholar
Strobl, C., Kopf, J., & Zeileis, A. (2013). Rasch trees: a new method for detecting differential item functioning in the Rasch model. Psychometrika,.Google Scholar
Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychological Methods, 14, 323348.CrossRefGoogle ScholarPubMed
Swaminathan, H., & Rogers, H.J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27(4), 361370.CrossRefGoogle Scholar
Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In Holland, P., & Wainer, H. (Eds.), Differential item functioning (pp. 67113). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58, 267288.CrossRefGoogle Scholar
Tutz, G. (2012). Regression for categorical data. Cambridge: Cambridge University Press.Google Scholar
Tutz, G., & Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics, 62, 961971.CrossRefGoogle ScholarPubMed
Van den Noortgate, W., & De Boeck, P. (2005). Assessing and explaining differential item functioning using logistic mixed models. Journal of Educational and Behavioral Statistics, 30(4), 443464.CrossRefGoogle Scholar
Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B, 68, 4967.CrossRefGoogle Scholar
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492514.CrossRefGoogle Scholar
Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the lasso. The Annals of Statistics, 35(5), 21732192.CrossRefGoogle Scholar
Zumbo, B. (1999). A handbook on the theory and methods of differential item functioning (dif). Ottawa: National Defense Headquarters.Google Scholar