Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T06:44:51.960Z Has data issue: true hasContentIssue false

Picture of all Solutions of Successive 2-Block Maxbet Problems

Published online by Cambridge University Press:  01 January 2025

Vartan Choulakian*
Affiliation:
Université de Moncton
*
Requests for reprints should be sent to Vartan Choulakian, Dépt. de Math./Statistique, Université de Moncton, Moncton, NB E1A 3E9, Canada. E-mail: vartan.choulakian@umoncton.ca

Abstract

The Maxbet method is a generalized principal components analysis of a data set, where the group structure of the variables is taken into account. Similarly, 3-block[12,13] partial Maxdiff method is a generalization of covariance analysis, where only the covariances between blocks (1, 2) and (1, 3) are taken into account. The aim of this paper is to give the global maximum for the 2-block Maxbet and 3-block[12,13] partial Maxdiff problems by picking the best solution from the complete solution set for the multivariate eigenvalue problem involved. To do this, we generalize the characteristic polynomial of a matrix to a system of two characteristic polynomials, and provide the complete solution set of the latter via Sylvester resultants. Examples are provided.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burt, C. (1917). The distribution and relations of educational abilities, London: P.S. King & Son.Google Scholar
Choulakian, V. (2003). The optimality of the centroid method. Psychometrika, 68, 473475.CrossRefGoogle Scholar
Choulakian, V. (2006). L1-norm projection pursuit principal component analysis. Computational Statistics & Data Analysis, 50, 14411451.CrossRefGoogle Scholar
Chu, M.T., Watterson, J.L. (1993). On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method. SIAM Journal on Scientific Computing, 14(5), 10891106.CrossRefGoogle Scholar
Cox, D., Little, J., O’Shea, D. (2005). Using algebraic geometry, (2nd ed.). New York: Springer.Google Scholar
Cox, D., Little, J., O’Shea, D. (2007). Ideals, varieties, and algorithms, (3rd ed.). New York: Springer.CrossRefGoogle Scholar
Drton, M., Sturmfels, B., Sullivant, S. (2009). Lectures on algebraic statistics, Boston: Birkhauser.CrossRefGoogle Scholar
Fienberg, S. (2007). Editorial: Expanding the statistical toolkit with algebraic statistics. Statistica Sinica, 17, 12611272.Google Scholar
Hanafi, M., Ten Berge, J.M.F. (2003). Global optimality of the successive Maxbet algorithm. Psychometrika, 68, 97103.CrossRefGoogle Scholar
Hanafi, M., Kiers, H.A.L. (2006). Analysis of K sets of data, with differential emphasis on agreement between and within sets. Computational Statistics & Data Analysis, 51, 14911508.CrossRefGoogle Scholar
Hanafi, M., Lafosse, R. (2001). Generalizations of the simple linear regression to analyze the dependance of K sets of variables with (K+1)th set. Revue de Statistique Appliquée, 49(1), 530 (In French).Google Scholar
Horst, P. (1961). Relations among m sets of measures. Psychometrika, 26, 129149.CrossRefGoogle Scholar
Kettenring, J.R. (1971). Canonical analysis of several sets of variables. Biometrika, 58, 433451.CrossRefGoogle Scholar
Kissita, G., Cazes, P., Hanafi, M., Lafosse, R. (2004). Two factorial analysis methods for the study of relationship between two tables of partitioned variables. Revue de Statistique Appliquée, 52(3), 7392 (In French).Google Scholar
Lafosse, R., Hanafi, M. (1997). Concordance of a table with K tables: Defining K+1 synthetic variables. Revue de Statistique Appliquée, 45(4), 111126 (In French).Google Scholar
Pistone, G., Riccomagno, E., Wynn, H.P. (2001). Algebraic statistics: Computational commutative algebra in statistics, New York: Chapman & Hall/CRC.Google Scholar
Ten Berge, J.M.F. (1988). Generalized approaches to the Maxbet problem and the Maxdiff problem, with applications to canonical correlations. Psychometrika, 53, 487494.CrossRefGoogle Scholar
Thurstone, L.L. (1931). Multiple factor analysis. Psychological Review, 38, 406427.CrossRefGoogle Scholar
van de Geer, J.P. (1984). Linear relations among k sets of variables. Psychometrika, 49, 7994.CrossRefGoogle Scholar
Vivien, M., Sabatier, R. (2001). An extension of multiple tables by PLS regression. Revue de Statistique Appliquée, 49(1), 3154 (In French).Google Scholar
Zhang, L.-H., & Chu, M.T. (2009). On a multivariate eigenvalue problem: II. Global solutions and the Gauss-Seidel method. Preprint, available at http://www4.ncsu.edu/mtchu/Research/Papers/Readme.html.Google Scholar
Zhang, L.-H., Liao, L.-Z., Sun, L.-M. (2011). Towards the global solution of the maximal correlation problem. Journal of Global Optimization, 49, 91107.CrossRefGoogle Scholar