Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T16:48:24.107Z Has data issue: false hasContentIssue false

A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables

Published online by Cambridge University Press:  01 January 2025

Kenneth A. Bollen*
Affiliation:
University of North Carolina at Chapel Hill
Albert Maydeu-Olivares
Affiliation:
University of Barcelona
*
Requests for reprints should be sent to Kenneth A. Bollen, Odum Institute for Research in Social Science, CB 3355 Manning Hall, University of North Carolina, Chapel Hill, NC 27599, USA. E-mail: bollen@unc.edu

Abstract

This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen’s (Psychometrika 61:109–121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator and its asymptotic standard errors for the regression coefficients in the latent variable and measurement models. We also provide an estimator of the variance and covariance parameters of the model, asymptotic standard errors for these, and test statistics of overall model fit. We examine this estimator via an empirical study and also via a small simulation study. Our results illustrate the greater robustness of the PIV estimator to structural misspecifications than the system-wide estimators that are commonly applied in SEMs.

Type
Theory and Methods
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Kenneth Bollen gratefully acknowledges support from NSF SES 0617276, NIDA 1-RO1-DA13148-01, and DA013148-05A2. Albert Maydeu-Olivares was supported by the Department of Universities, Research and Information Society (DURSI) of the Catalan Government, and by grant BSO2003-08507 from the Spanish Ministry of Science and Technology. We thank Sharon Christ, John Hipp, and Shawn Bauldry for research assistance. The comments of the members of the Carolina Structural Equation Modeling (CSEM) group are greatly appreciated. An earlier version of this paper under a different title was presented by K. Bollen at the Psychometric Society Meetings, June, 2002, Chapel Hill, North Carolina.

References

Bentler, P.M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.Google Scholar
Bollen, K.A. (1989). Structural equations with latent variables, New York: Wiley.CrossRefGoogle Scholar
Bollen, K.A. (1996). An alternative Two Stage Least Squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109121.CrossRefGoogle Scholar
Bollen, K.A. (1996b). A limited information estimator for LISREL models with and without heteroscedasticity. In Marcoulides, G.A., & Schumacker, R.E. (Eds.), Advanced structural equation modeling (pp. 227241). Mahwah, NJ: Erlbaum.Google Scholar
Bollen, K.A. (2001). Two-stage least squares and latent variable models: Simultaneous estimation and robustness to misspecifications. In Cudeck, R., Du Toit, S., & Sörbom, D. (Eds.), Structural equation modeling: Present and future (pp. 119138). Lincolnwood, IL: Scientific Software.Google Scholar
Bollen, K.A. (2002). Polychoric two-stage least squares (P2SLS) in structural equation models with categorical variables. Unpublished manuscript. University of North Carolina at Chapel Hill.Google Scholar
Bollen, K.A., Bauer, D.J. (2004). Automating the selection of model-implied instrumental variables. Sociological Methods and Research, 32, 425452.CrossRefGoogle Scholar
Bollen, K.A., Kirby, J.B., Curran, P.J., Paxton, P.M., & Chen, F. (2007). Latent variable models under misspecification: Two Stage Least Squares (2SLS) and Maximum Likelihood (ML) estimators. Sociological Methods and Research, in press.CrossRefGoogle Scholar
Bowden, R.J., Turkington, D.A. (1984). Instrumental variables, Cambridge: Cambridge University Press.Google Scholar
Browne, M.W. (1984). Asymptotically distribution free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Browne, M.W., Arminger, G. (1995). Specification and estimation of mean and covariance structure models. In Arminger, G., Clogg, C.C., Sobel, M.E. (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 185249). New York: Plenum.CrossRefGoogle Scholar
Cai, L., Maydeu-Olivares, A., Coffman, D.L., Thissen, D. (2006). Limited information goodness of fit testing of item response theory models for sparse 2p tables. British Journal of Mathematical and Statistical Psychology, 59, 173194.CrossRefGoogle ScholarPubMed
Chang, E.C., D’Zurilla, T.J., Maydeu-Olivares, A. (1994). Assessing the dimensionality of optimism and pessimism using a multimeasure approach. Cognitive Therapy and Research, 18, 143160.CrossRefGoogle Scholar
Cragg, J.G. (1968). Some effects of incorrect specification on the small sample properties of several simultaneous equation estimators. International Economic Review, 9, 6386.CrossRefGoogle Scholar
Flora, D.B. (2002). Evaluation of categorical variable methodology for confirmatory factor analysis with Likert-type data. Unpublished Dissertation: University of North Carolina at Chapel Hill.Google Scholar
Flora, D.B., Curran, P.J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466491.CrossRefGoogle ScholarPubMed
Gunsjö, A. (1994). Faktoranalys av ordinala variabler, Stockholm: Almqvist & Wiksell.Google Scholar
Hägglund, G. (1982). Factor analysis by instrumental variables. Psychometrika, 47, 209222.CrossRefGoogle Scholar
Hipp, J., Bollen, K.A. (2003). Model fit in structural equation models with censored, ordinal, and dichotomous variables: Testing vanishing tetrads. Sociological Methodology, 33, 267305.CrossRefGoogle Scholar
Jöreskog, K.G. (1973). A general method for estimating a linear structural equation. In Goldberger, A., Duncan, O. (Eds.), Structural equation models in the social sciences, New York: Seminar Press.Google Scholar
Jöreskog, K.G. (1983). Factor analysis as an error-in-variables model. In Wainer, H., & Messick, S. (Eds.), Principles of modern psychological measurement (pp. 185196). Hillsdale, NJ: Erlbaum.Google Scholar
Jöreskog, K.G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381390.CrossRefGoogle Scholar
Jöreskog, K.G., & Sörbom, D. (1984). LISREL VI: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Mooresville, IN: Scientific Software.Google Scholar
Jöreskog, K.G., Sörbom, D. (2001). LISREL 8, Chicago: Scientific Software.Google Scholar
Jöreskog, K.G., Sörbom, D., du Toit, S., du Toit, M. (2001). LISREL 8: New statistical features, Chicago: Scientific Software.Google Scholar
Küsters, U.L. (1987). Hierarchische Mittelwert- und Kovarianztrukturmodelle mit nichtmetrischen endogenen Variablen, Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
Lee, S.Y., Poon, W.Y., Bentler, P.M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339358.CrossRefGoogle ScholarPubMed
Madansky, A. (1964). Instrumental variables in factor analysis. Psychometrika, 29, 105113.CrossRefGoogle Scholar
Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209228.CrossRefGoogle Scholar
Maydeu-Olivares, A. (2006). Limited information estimation and testing of discretized multivariate normal structural models. Psychometrika, 71, 5777.CrossRefGoogle Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Muthén, B. (1993). Goodness of fit with categorical and other nonnormal variables. In Bollen, K.A., & Long, J.S. (Eds.), Testing structural equation models (pp. 205234). Newbury Park, CA: Sage.Google Scholar
Muthén, L., Muthén, B. (2001). MPLUS, Los Angeles: Muthén & Muthén.Google Scholar
Muthén, B., Satorra, A. (1995). Technical aspects of Muthén’s LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60, 489503.CrossRefGoogle Scholar
Muthén, B., du Toit, S.H.C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished manuscript. College of Education, UCLA, Los Angeles, CA.Google Scholar
Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443460.CrossRefGoogle Scholar
Poon, W.Y., Lee, S.Y. (1987). Maximum-likelihood-estimation of multivariate polyserial and polychoric correlation-coefficients. Psychometrika, 52, 409430.CrossRefGoogle Scholar
Quiroga, A.M. (1992). Studies of the polychoric correlation and other correlation measures for ordinal variables. PhD Dissertation, Uppsala University, Department of Statistics.Google Scholar
Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54, 131151.CrossRefGoogle Scholar
Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In von Eye, A., & Clogg, C.C. (Eds.), Latent variable analysis: Applications to developmental research (pp. 399419). Thousand Oaks, CA: Sage.Google Scholar
Scheier, M.F., Carver, C.S. (1985). Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychology, 4, 219247.CrossRefGoogle ScholarPubMed
Yuan, K.H.B., Bentler, P.M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767774.CrossRefGoogle Scholar