Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T19:11:54.476Z Has data issue: false hasContentIssue false

Polytomous Latent Scales for the Investigation of the Ordering of Items

Published online by Cambridge University Press:  01 January 2025

Rudy Ligtvoet*
Affiliation:
University of Amsterdam
L. Andries van der Ark
Affiliation:
Tilburg University
Wicher P. Bergsma
Affiliation:
London School of Economics
Klaas Sijtsma
Affiliation:
Tilburg University
*
Requests for reprints should be sent to Rudy Ligtvoet, Faculty of Social and Behavioural Sciences, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam, The Netherlands. E-mail: r.ligtvoet@uva.nl

Abstract

We propose three latent scales within the framework of nonparametric item response theory for polytomously scored items. Latent scales are models that imply an invariant item ordering, meaning that the order of the items is the same for each measurement value on the latent scale. This ordering property may be important in, for example, intelligence testing and person-fit analysis. We derive observable properties of the three latent scales that can each be used to investigate in real data whether the particular model adequately describes the data. We also propose a methodology for analyzing test data in an effort to find support for a latent scale, and we use two real-data examples to illustrate the practical use of this methodology.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agresti, A. (1990). Categorical data analysis, New York: Wiley.Google Scholar
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Bleichrodt, N., Drenth, P.J.D., Zaal, J.N., Resing, W.C.M. (1987). Revisie Amsterdamse kinder intelligentie test. Handleiding (Revision Amsterdam child intelligence test), Lisse, The Netherlands: Swets & Zeitlinger.Google Scholar
Cavalini, P.M. (1992). It’s an ill wind that brings no good. Studies on odour annoyance and the dispersion of odorant concentrations from industries. Unpublished doctoral dissertation, University of Groningen, The Netherlands.Google Scholar
Chang, H., Mazzeo, J. (1994). The unique correspondence of the item response function and item category response function in polytomously scored item response models. Psychometrika, 59, 391404.CrossRefGoogle Scholar
Douglas, R., Fienberg, S.E., Lee, M.-L.T., Sampson, A.R., Whitaker, L.R. (1991). Positive dependence concepts for ordinal contingency tables. In Block, H.W., Sampson, A.R., Savits, T.H. (Eds.), Topics in statistical dependence (pp. 189202). Hayward, CA: Institute of Mathematical Statistics.Google Scholar
Emons, W.H.M., Sijtsma, K., Meijer, R.R. (2007). On the consistency of individual classification using short scales. Psychological Methods, 12, 105120.CrossRefGoogle ScholarPubMed
Glas, C.A.W., Verhelst, N.D. (1995). Testing the Rasch model. In Fischer, G.H., Molenaar, I.W. (Eds.), Rasch models: foundations, recent developments, and applications (pp. 6996). New York: Springer.CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331347.CrossRefGoogle Scholar
Hemker, B.T., Van der Ark, L.A., Sijtsma, K. (2001). On measurement properties of continuation ratio models. Psychometrika, 66, 487506.CrossRefGoogle Scholar
Hollander, M., Proschan, F., Sethuraman, J. (1977). Functions decreasing in transposition and their applications in ranking problems. The Annals of Statistics, 5, 722733.CrossRefGoogle Scholar
Jansen, B.R.J., Van der Maas, H.L.J. (1997). Statistical test of the rule assessment methodology by latent class analysis. Developmental Review, 17, 321357.CrossRefGoogle Scholar
Ligtvoet, R., Van der Ark, L.A., Te Marvelde, J.M., Sijtsma, K. (2010). Investigating an invariant item ordering for polytomously scored items. Educational and Psychological Measurement, 70, 578595.CrossRefGoogle Scholar
Ligtvoet, R., Van der Ark, L.A., Bergsma, W.P., & Sijtsma, K. (2010b). Examples concerning the relationships between latent/manifest scales (unpublished manuscript). Retrieved from http://spitswww.uvt.nl/~avdrark/research/LABSexamples.pdf.Google Scholar
Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12, 153157.CrossRefGoogle ScholarPubMed
Mellenbergh, G.J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psychological Measurement, 19, 91100.CrossRefGoogle Scholar
Mokken, R.J. (1971). A theory and procedure of scale analysis, The Hague/Berlin: Mouton/De Gruyter.CrossRefGoogle Scholar
Molenaar, I.W. (1983). Item steps (Heymans Bulletin 83-630-EX), Groningen, The Netherlands: University of Groningen, Department of Statistics and Measurement Theory.Google Scholar
Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In van der Linden, W.J., Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 369380). New York: Springer.CrossRefGoogle Scholar
Molenaar, I.W. (2004). About handy, handmade and handsome models. Statistica Neerlandica, 58, 120.CrossRefGoogle Scholar
Molenaar, I.W., Sijtsma, K. (2000). User’s Manual MSP5 for Windows, Groningen, The Netherlands: iec ProGAMMA.Google Scholar
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Measurement, 14, 5971.CrossRefGoogle Scholar
Muraki, E. (1992). A generalized partial credit model: applications for an EM algorithm. Applied Psychological Measurement, 16, 159177.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen, Denmark: Nielsen and Lydiche.Google Scholar
Rosenbaum, P.R. (1987). Probability inequalities for latent scales. British Journal of Mathematical & Statistical Psychology, 40, 157168.CrossRefGoogle Scholar
Rosenbaum, P.R. (1987). Comparing item characteristic curves. Psychometrika, 52, 217233.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph (No. 17).Google Scholar
Samejima, F. (1997). Graded response model. In van der Linden, W.J., Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 85100). New York: Springer.CrossRefGoogle Scholar
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281304.CrossRefGoogle Scholar
Scheiblechner, H. (2003). Nonparametric IRT: testing the bi-isotonicity of Isotonic Probabilistic Models (ISOP). Psychometrika, 68, 7996.CrossRefGoogle Scholar
Shaked, M., Shantikumar, J.G. (1994). Stochastic orders and their applications, San Diego, CA: Academic Press.Google Scholar
Sijtsma, K., Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models. Psychometrika, 63, 183200.CrossRefGoogle Scholar
Sijtsma, K., Junker, B.W. (1996). A survey of theory and methods of invariant item ordering. British Journal of Mathematical & Statistical Psychology, 49, 79105.CrossRefGoogle ScholarPubMed
Sijtsma, K., Meijer, R.R., Van der Ark, L.A. (2011). Mokken Scale Analysis as time goes by: an update for scaling practitioners. Personality and Individual Differences, 50, 3137.CrossRefGoogle Scholar
Sijtsma, K., Molenaar, I.W. (2002). Introduction to nonparametric item response theory, Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical & Statistical Psychology, 43, 3955.CrossRefGoogle Scholar
Van der Ark, L.A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20(11), 119.Google Scholar
Van der Ark, L.A., Croon, M.A., Sijtsma, K. (2008). Mokken scale analysis for dichotomous items using marginal models. Psychometrika, 73, 183208.CrossRefGoogle ScholarPubMed
Van der Ark, L.A., Hemker, B.T., Sijtsma, K. (2002). Hierarchically related nonparametric IRT models, and practical data analysis methods. In Marcoulides, G.A., Moustaki, I. (Eds.), Latent variable and latent structure models (pp. 4162). Mahwah, NJ: Erlbaum.Google Scholar
Van Engelenburg, G. (1997). On psychometric models for polytomous items with ordered categories within the framework of item response theory. Unpublished doctoral dissertation, University of Amsterdam.Google Scholar
Van Schuur, W.H. (2003). Mokken scale analysis: between the Guttman scale and parametric item response theory. Political Analysis, 11, 139163.CrossRefGoogle Scholar
Watson, R., Deary, I.J., Shipley, B. (2008). A hierarchy of distress: Mokken scaling of the GHQ-30. Psychological Medicine, 38, 575579.CrossRefGoogle ScholarPubMed
Wechsler, D. (2003). Wechsler intelligence scale for children, (4th ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Weekers, A.M., Brown, G.T.L., Veldkamp, B.P. (2009). Analyzing the dimensionality of the Student’s Conceptions of Assessment inventory. In McInerney, D.M., Brown, G.T.L., Liem, G.A.D. (Eds.), Student perspectives on assessment: what students can tell us about assessment for learning, Charlotte, NC: Information Age.Google Scholar