Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T10:29:31.032Z Has data issue: false hasContentIssue false

Properties of Ideal Point Classification Models for Bivariate Binary Data

Published online by Cambridge University Press:  01 January 2025

Hailemichael M. Worku*
Affiliation:
Leiden University
Mark de Rooij
Affiliation:
Leiden University
*
Correspondence should be made to Hailemichael M. Worku, Psychological Institute, Faculty of Social Sciences, Leiden University, PO Box 9555, 2330 RB Leiden, The Netherlands. Email: h.m.worku@fsw.leidenuniv.nl

Abstract

The ideal point classification (IPC) model was originally proposed for analysing multinomial data in the presence of predictors. In this paper, we studied properties of the IPC model for analysing bivariate binary data with a specific focus on three quantities: (1) the marginal probabilities; (2) the association structure between the two binary responses; and (3) the joint probabilities. We found that the IPC model with a specific class point configuration represents either the marginal probabilities or the association structure. However, the IPC model is not able to represent both quantities at the same time. We then derived a new parametrization of the model, the bivariate IPC (BIPC) model, which is able to represent both the marginal probabilities and the association structure. Like the standard IPC model, the results of the BIPC model can be displayed in a biplot, from which the effects of predictors on the binary responses and on their association can be read. We will illustrate our findings with a psychological example relating personality traits to depression and anxiety disorders.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Request for reprints can be directed to the first author (Hailemichael M. Worku).

References

Agresti, A. (2002). Categorical data analysis, 2New York: WileyCrossRefGoogle Scholar
Aitchison, J., & Silvey, S. D. (1958). Maximum likelihood estimation of parameters subject to restrains. Annals of Mathematical Statistics, 29, 813828CrossRefGoogle Scholar
Aitchison, J., & Silvey, S. D. (1960). Maximum-likelihood estimation procedures and associated tests of significance. Journal of the Royal Statistical Society, Series, B22, 154171.CrossRefGoogle Scholar
Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of Royal Statistics Society, B46, 130.Google Scholar
Ashford, J. R., & Morgan, D. C., & Rae, S., & Sowden, R. R. (1970). Respiratory symptoms in british coal miners. The American Review of Respiratory Disease, 102, 370381Google ScholarPubMed
Bahadur, R. R. Solomon, H. (1961). A representation of the joint distribution of responses to n dichotomous items. Studies in item analysis and prediction, Stanford, CA: Stanford University Press 158176.Google Scholar
Bartolucci, F., & Colombi, R., & Forcina, A. (2007). An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints. Statistica Sinica, 17, 691711.Google Scholar
Bartolucci, F., & Forcina, A., & Dardanoni, V. (2001). Positive quadrant dependence and marginal modelling in two-way tables with ordered margins. Journal of the American Statistical Association, 96, 14971505CrossRefGoogle Scholar
Bergsma, W. P. (1997). Marginal models for categorical variables (Unpublisheddoctoral dissertation). Tilburg University.Google Scholar
Bergsma, W. P., & Croon, M. A., & Hagenaars, J. A. (2009). Marginal models for dependent, clustered and longitudinal categorical data, New York: Springer.Google Scholar
Bergsma, W. P., & Rudas, T. (2002). Marginal models for categorical data. The Annals of Statistics, 30, 140159CrossRefGoogle Scholar
Carey, V., & Zeger, S. L., & Diggle, P. (1993). Modeling multivariate binary data with alternating logistic regressions. Biometrika, 80, 517526CrossRefGoogle Scholar
Colombi, R., & Forcina, A. (2001). Marginal regression models for the analysis positive association of ordinal response variables. Biometrika, 88, 10071019CrossRefGoogle Scholar
Coombs, C. H. (1976). A theory of data, Ann Arbor, MI: Mathesis Press.Google Scholar
Cox, D. R. (1972). The analysis of multivariate binary data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 21, 113120.Google Scholar
De Leeuw, J. Everitt, B. S., & Howelll, D. C. (2005). Multidimensional unfolding. Encyclopedia of statistics in behavioral science, Hoboken: Wiley 12891294.Google Scholar
De Leeuw, J. (2006). Pseudo-voronoi diagrams for multicategory exponential representations. UCLA: Statistics Preprints # 463.Google Scholar
De Rooij, M. (2009a). Ideal point discriminant analysis with a special emphasis on visualization. Psychometrika, 74, 317–330.CrossRefGoogle Scholar
De Rooij, M. (2009b). Trend vector models for the analysis of change in continuous time for multiple groups. Computational statistical data analysis. 53, 3209-3216.CrossRefGoogle Scholar
De Rooij, M., & Heiser, W. J. (2005). Graphical representations and odds ratios in a distance-association model for the analysis of cross-classified data. Psychometrika, 70, 99122CrossRefGoogle Scholar
Glonek, G. F. V. (1996). A class of regression models for multivariate categorical responses. Biometrika, 83, 1528CrossRefGoogle Scholar
Glonek, G. F. V., & McCullagh, P. (1995). Multivariate logistic models. Journal of the Royal Statistical Society, Series B, 57, 533546.CrossRefGoogle Scholar
Gower, J. C., & Hand, D. J. (1996). Biplots, London: Chapman and Hall.Google Scholar
Gower, J. C., & Lubbe, S., & Le Roux, N. (2011). Understanding biplots, Chichester: WileyCrossRefGoogle Scholar
Heiser, W. J. (1981). Unfolding analysis of proximity data, Leiden: Leiden University.Google Scholar
Heiser, W. J. Legendre, P., & Legendre, L. (1987). Joint ordination of species and sites: The unfolding technique. Developments in numerical ecology, Berlin: Springer 189221CrossRefGoogle Scholar
Lang, J. B. (1996). Maximum likelihood methods for a generalized class of log-linear models. The Annals of Statistics, 24, 726752CrossRefGoogle Scholar
Lang, J. B., & Agresti, A. (1994). Simultaneously modelling the joint and marginal distributions of multivariate categorical responses. Journal of the American Statistical Association, 89, 625632CrossRefGoogle Scholar
Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalised linear models. Biometrika, 73, 1322CrossRefGoogle Scholar
Liang, K. Y., & Zeger, S. L., & Qaqish, B. (1992). Multivariate regression analysis of categorical data. Journal of the Royal Statistical Society, Series B, 54, 340.CrossRefGoogle Scholar
Lipsitz, S. R., & Laird, N. M., & Harrington, D. P. (1990). Maximum likelihood regression methods for paired binary data. Statistics in Medicine, 9, 15171525CrossRefGoogle ScholarPubMed
Mardia, K. V. (1967). Some contributions to the contingency-type bivariate distributions. Biometrika, 54, 235249CrossRefGoogle Scholar
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models, London: Chapman and HallCrossRefGoogle Scholar
Molenberghs, G., & Lesaffre, E. (1994). Marginal modeling of correlated ordinal data using a multivariate plackett distribution. Journal of the American Statistical Association, 89, 633644CrossRefGoogle Scholar
Molenberghs, G., & Lesaffre, E. (1999). Marginal modeling of multivariate categorical data. Statistics in Medicine, 18, 223722553.0.CO;2-R>CrossRefGoogle ScholarPubMed
Molenberghs, G., & Verbeke, G. (2005). Models for discrete longitudinal data, New York: Springer.Google Scholar
Palmgren, J. (1989). Regression Models for Bivariate Binary Responses (Working Paper), Seatle, WA: University of Washington.Google Scholar
Penninx, B. W., & Beekman, A. T., & Smit, J. H., & Zitman, F. G., & Nolen, W. A., & Spinhoven, P., & Van Dyck, R. (2008). The Netherlands study of depression and anxiety (NESDA): Rationale, objectives and methods. International Journal of Methods in Psychiatric Research., 17, 121140CrossRefGoogle ScholarPubMed
Spinhoven, P., & De Rooij, M., & Heiser, W., & Penninx, BWJH, & Smit, J. (2009). The role of personality in comorbidity among anxiety and depressive disorders in primary care and speciality care: a cross-sectional analysis. General hospital psychiatry, 31, 470477CrossRefGoogle ScholarPubMed
Takane, Y. Blasius, J., & Greenacre, M. J. (1998). Visualization in ideal point discriminant analysis. Visualization of categorical data, Academic press: New York 441459CrossRefGoogle Scholar
Takane, Y., & Bozdogan, H., & Shibayama, T. (1987). Ideal point discriminant analysis. Psychometrika, 52, 371392CrossRefGoogle Scholar
Vermunt, J. K., & Rodrigo, M. F., & Ato-Garcia, M. (2001). Modeling joint and marginal distributions in the analysis of categorical panel data. Sociological Methods and Research, 30, 170196CrossRefGoogle Scholar
Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software, 32, 1–34. http://www.jstatsoft.org/v32/i10/.CrossRefGoogle Scholar
Zhao, L. P., & Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika, 77, 642648CrossRefGoogle Scholar