Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T18:54:32.966Z Has data issue: false hasContentIssue false

The Rank of Reduced Dispersion Matrices

Published online by Cambridge University Press:  01 January 2025

Paul A. Bekker
Affiliation:
Department of Econometrics, Tilburg University
Jan de Leeuw*
Affiliation:
Department of Data Theory FSW, University of Leiden
*
Requests for reprints should be sent to Jan de Leeuw, Department of Data Theory FSW/RUL, Middelstegracht 4, 2312 TW Leiden, THE NETHERLANDS.

Abstract

Psychometricians working in factor analysis and econometricians working in regression with measurement error in all variables are both interested in the rank of dispersion matrices under variation of the diagonal elements. Psychometricians concentrate on cases in which low rank can be attained, preferably rank one, the Spearman case. Econometricians concentrate on cases in which the rank cannot be reduced below the number of variables minus one, the Frisch case. In this paper we give an extensive historial discussion of both fields, we prove the two key results in a more satisfactory and uniform way, we point out various small errors and misunderstandings, and we present a methodological comparison of factor analysis and regression on the basis of our results.

Type
Original Paper
Copyright
Copyright © 1987 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Financial support by the Netherlands Organization for the Advancement of Pure Research (ZWO) is gratefully acknowledged.

References

Albert, A. A. (1944). The matrices of factor analysis. Proceedings of the National Academy of Sciences, 30, 9095.CrossRefGoogle ScholarPubMed
Albert, A. A. (1944). The minimum rank of a correlation matrix. Proceedings of the National Academy of Sciences, 30, 144148.CrossRefGoogle ScholarPubMed
Bekker, P. A. (1986). Comment on identification in the linear errors in variables model. Econometrica, 54, 215217.CrossRefGoogle Scholar
Bekker, P. A., Kapteyn, A., Wansbeek, T. J. (1984). Measurement error and endogeneity in regression: Bounds for ML and VI estimates. In Dijkstra, T. K. (Eds.), Misspecification analysis, Berlin: Springer Verlag.Google Scholar
Burt, C. (1909). Experimental tests of general intelligence. British Journal of Psychology, 3, 94177.Google Scholar
Camp, B. H. (1932). The converse of Spearman's two-factor theorem. Biometrika, 24, 418428.CrossRefGoogle Scholar
Dhondt, A. (1960). Sur une généralisation d'un theorème de R. Frisch en analyse de confluence [On a generalization of a theorem by R. Frisch about confluence analysis]. Cahiers du Centre d'Etude de Recherche Operationelle, 2, 3746.Google Scholar
Fiedler, M. (1969). A characterization of tridiagonal matrices. Linear Algebra and its Applications, 2, 191197.CrossRefGoogle Scholar
Frisch, R. (1934). Statistical confluence analysis by means of complete regression systems, Oslo: University of Oslo, Economic Institute.Google Scholar
Garnett, J. C. M. (1919). On certain independent factors in mental measurement. Proceedings of the Royal Society of London, 96, 91111.Google Scholar
Garnett, J. C. M. (1919). General ability, cleverness, and purpose. British Journal of Psychology, 9, 345366.Google Scholar
Garnett, J. C. M. (1920). The single general factor in dissimilar mental measurements. British Journal of Psychology, 10, 242258.Google Scholar
Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19, 149161.CrossRefGoogle Scholar
Guttman, L. (1956). “Best possible” systematic estimates of communalities. Psychometrika, 21, 273285.CrossRefGoogle Scholar
Guttman, L. (1958). To what extent can communalities reduce rank?. Psychometrika, 23, 297308.CrossRefGoogle Scholar
Hakim, M., Kochard, E. O., Olivier, J. P., Terouanne, E. (1976). Sur les traces de Spearman [On the traces of Spearman], Paris: Cahiers de Bureau Universitaire de Recherche Operationelle, Université Pierre et Marie Curie.Google Scholar
Hart, B., Spearman, C. E. (1912). General ability, its existence and nature. British Journal of Psychology, 5, 5184.Google Scholar
Hearnshaw, L. S. (1981). Cyril Burt, psychologist, New York: Random House.Google Scholar
Kalman, R. E. (1982). System identification from noisy data. In Bednarek, A. R., Cesari, L. (Eds.), Dynamical Systems II, New York: Academic Press.Google Scholar
Kalman, R. E. (1982). Identification from real data. In Hazewinkel, M., Rinnooy Kan, A. H. G. (Eds.), Current developments in the interface economics, econometrics, mathematics, Dordrecht: D. Reidel.Google Scholar
Kalman, R. E. (1983). Identifiability and modelling in econometrics. In Krishnaiah, P. R. (Eds.), Developments in Statistics 4, New York: Academic Press.Google Scholar
Kalman, R. E. (1984). We can do something about multicollinearity!. Communications in Statistics—Theory and Methods, 13, 115125.CrossRefGoogle Scholar
Kelley, T. L. (1928). Crossroads in the mind of man: A study of differentiable mental abilities. Stanford University Press.CrossRefGoogle Scholar
Klepper, S., Leamer, E. E. (1984). Consistent sets of estimates for regressions with errors in all variables. Econometrica, 52, 162183.CrossRefGoogle Scholar
Koopmans, T. C. (1937). Linear regression analysis of economic time series, Haarlem: De Erven F. Bohn NV.Google Scholar
Krueger, F., Spearman, C. E. (1907). Die Korrelation zwischen verscheidenen geistigen Leistungsfähigkeiten [The correlation between several mental abilities]. Zeitschrift für Psychologie, 54, 50114.Google Scholar
Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple factor analysis. Psychometrika, 2, 8593.CrossRefGoogle Scholar
Marsaglia, G., Styan, G. P. H. (1974). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2, 269292.CrossRefGoogle Scholar
Patefield, W. M. (1981). Multivariate linear relationships: Maximum likelihood estimation and regression bounds. Journal of the Royal Statistical Society (Series B), 43, 342352.CrossRefGoogle Scholar
Pearson, K. (1901). On lines and planes of closest fit to points in space. Philosophical Magazine, 2, 559572.Google Scholar
Reiersøl, O. (1941). Confluence analysis by means of lag moments and other methods of confluence analysis. Econometrica, 9, 124.CrossRefGoogle Scholar
Reiersøl, O. (1945). Confluence analysis by means of instrumental sets of variables. Arkiv för Mathematik, Astronomi och Fysik, 32 A1119.Google Scholar
Rheinboldt, W. C., Sheperd, R. A. (1974). On a characterization of tridiagonal matrices by M. Fiedler. Linear Algebra and its Applications, 8, 8790.CrossRefGoogle Scholar
Shapiro, A. (1982). Rank reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis. Psychometrika, 47, 187199.CrossRefGoogle Scholar
Shapiro, A. (1982). Weighted minimum trace factor analysis. Psychometrika, 47, 243264.CrossRefGoogle Scholar
Spearman, C. E. (1904). General intelligence objectively measured and defined. American Journal of Psychology, 15, 201299.CrossRefGoogle Scholar
Spearman, C. E. (1927). The abilities of man, London: McMillan.Google Scholar
Spearman, C. E., Holzinger, K. J. (1924). The sampling error in the theory of two factors. British Journal of Psychology, 15, 1719.Google Scholar
Spearman, C. E., Holzinger, K. J. (1925). Note on the sampling error of tetrad differences. British Journal of Psychology, 15, 8689.Google Scholar
Thurstone, L. L. (1935). The vectors of mind. University of Chicago Press.Google Scholar
Tumura, Y., Fukutomi, K. (1968). On the identification in factor analysis. Report of Statistical Application Research, Union of Japanese Scientists and Engineers, 15, 611.Google Scholar
Wilson, E. B. (1928). On hierarchical correlation systems. Proceedings of the National Academy of Sciences, 14, 283291.CrossRefGoogle ScholarPubMed
Wilson, E. B. (1929). Review of Kelley, Crossroads in the mind of man. Journal of General Psychology, 2, 153169.Google Scholar
Wilson, E. B., Worcester, J. (1934). The resolution of four tests. Proceedings of the National Academy of Sciences, 20, 189192.CrossRefGoogle ScholarPubMed
Wilson, E. B., Worcester, J. (1939). The resolution of six tests into three general factors. Proceedings of the National Academy of Sciences, 25, 7379.CrossRefGoogle ScholarPubMed