Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T18:39:57.419Z Has data issue: false hasContentIssue false

Rasch-Representable Reaction Time Distributions

Published online by Cambridge University Press:  01 January 2025

Dirk Vorberg*
Affiliation:
Fachbereich Psychnologie Philipps-Universität Marburg
Wolfgang Schwarz
Affiliation:
Fachbereich Psychnologie Philipps-Universität Marburg
*
Requests for reprints should be directed to Dirk Vorberg, Technische Universität Braunschweig, Institut für Psychologie, Spielmannstraβe 19, 3300 Brannschweig, FRG.

Abstract

This article investigates properties of a representation based on the Rasch test model for reaction times (RT) that was proposed by Micko. Necessary and sufficient conditions for a set of RT distributions to be Rasch-representable are derived. It is shown that independent serial and independent parallel processing models cannot be reconciled with the representation. However, random extreme models compatible with the Reasch-representation exist that assume RT is determined by the longest or he shortest processing time of a random number of independent paraloel channels. Nonparametric properties of Rasch-representable distributions are derived that can be used for testing the model and for estimating its parameters. Conditions are presented for Rasch-representable distributions to form a scale family. Finally, Rasch-represent-able distributions are characterized interms of their hazard functions.

Type
Original Paper
Copyright
Copyright © 1990 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

For helpful discussions, we are grateful to Hans Irtel, Christoph Micko, Hartmann Scheiblechner, and Hans-Henning Schultz.

References

Ashby, F. G. & Townsend, J. T. (1980). Decomposing the reaction time distribution: Pure insertion and selective influence revisited. Journal of Mathematical Psychology, 21, 93123.CrossRefGoogle Scholar
Bamber, D. (1975). The area above the ordinal dominance graph and the below the Receiver Operating Characteristic graph. Journal of Mathematical Psychology, 12, 387415.CrossRefGoogle Scholar
Colonius, H. (1984). Stochastische Theorien individuellen Wahlverhaltens [Stochastic theories of individual choice behavior], Heidelberg: Springer.CrossRefGoogle Scholar
Donders, F. C. (1968). Die Schnelligkeit psychischer Processe [On the speed of mental processes], Archiv für Anatomie und Physiologie und Wissenschaftliche Medizin, 657681.Google Scholar
Donders, F. C. (1969). Over de snelhed van psychische processen [On the speed of mental processes]. Acta Psychologica, 30, 412431.CrossRefGoogle Scholar
Drösler, J. (1986). Figurale Wahrnehmung doch additiv? [Is figural perception additive?]. Zeitschrift für experimentelle und angewandte Psychologie, 33, 351359.Google Scholar
Feller, W. (1966). An introduction to probability theory and its applications (Vol. II), New York: Wiley.Google Scholar
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics, New York: Wiley.Google Scholar
Johnson, N. L. & Kotz, S. (1970). Distributions in statistics (Vol. II), Boston: Houghton Mifflin.Google Scholar
Luce, R. D. (1959). Individual choice behavior, New York: Wiley.Google Scholar
Luce, R. D. (1986). Response times, New York: Oxford University Press.Google Scholar
McGill, W. J. (1963). Stochastic latency mechanisms. In Luce, R. D., Bush, R. R., & Galanter, E. (Eds.), Handbook of mathematical psychology (pp. 309360). New York: Wiley.Google Scholar
Meijers, L. M. M., & Eijkman, E. G. J. (1974). The motor system in simple reaction experiments. Acta Psychologica, 38, 367377.CrossRefGoogle Scholar
Micko, H. C. (1969). A psychological scale for reaction time measurement. Acta Psychologica, 30, 324335.CrossRefGoogle Scholar
Micko, H. C. (1970). Eine Verallgemeinerung des Meβmodells von Reasch mit einer Anwendung auf die Psychophysik der Reaktionen [A generalization of Reash's measurement model with an application to the psychiphysics of reactions]. Psychologische Beiträge, 12, 422.Google Scholar
Rasch, G. (1966). An item analysis which takes individual differences into account. British Journal of Mathematical and Statistical Psychology, 19, 4957.CrossRefGoogle ScholarPubMed
Ross, S. M. (1983). Stochastic processes, New York: Wiley.Google Scholar
Sterngberg, S. (1969). The discovery of processing stages: Extensions of Donder's method. Acta Psychologica, 30, 276315.CrossRefGoogle Scholar
Townsend, J. T. & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes, Cambridge: Cambridge University Press.Google Scholar
Ulrich, R., & Stapf, K. (1984). A double-response paradigm to study stimulus intensity effects upon motor system in simple reaction time experiments. Perception & Psychophysics, 36, 545558.CrossRefGoogle ScholarPubMed
Wilk, M. B. & Gnanadesikan, R. (1969). Probability plotting methods for the analysis of data. Biometrika, 55, 117.Google Scholar