Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:30:54.124Z Has data issue: true hasContentIssue false

Redundancy Analysis for Qualitative Variables

Published online by Cambridge University Press:  01 January 2025

Abby Z. Israels*
Affiliation:
Netherlands Central Bureau of Statistics
*
Requests for reprints should be sent to Abby Z. Israëls, Central Bureau of Statistics, Department of Statistical Methods, P.O. Box 959, 2270 AZ VOORBURG, The Netherlands.

Abstract

Redundancy analysis (also called principal components analysis of instrumental variables) is a technique for two sets of variables, one set being dependent of the other. Its aim is maximization of the explained variance of the dependent variables by a linear combination of the explanatory variables. The technique is generalized to qualitative variables; it then gives implicitly a simultaneous ‘optimal’ scaling of the dependent, qualitative variables. Examples are taken from the Dutch Life Situation Survey 1977, using Satisfaction with Life and Happiness as dependent variables. The analysis leads to one well-being scale, defined by the explanatory variables Marital status, Schooling, Income and Activity.

Type
Original Paper
Copyright
Copyright © 1984 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The views expressed in this paper are those of the author and do not necessarily reflect the policies of the Netherlands Central Bureau of Statistics.

References

Benzécri, J. P. et al. (1973). L'analyse des données (Vol. 2), Paris: Dunod.Google Scholar
CBS (Netherlands Central Bureau of Statistics) (1978). De leefsituatie van de Nederlandse bevolking 1977 (Wellbeing of the population in the Netherlands 1977), The Hague: Staatsuitgeverij.Google Scholar
CBS (Netherlands Central Bureau of Statistics) (1982). In Jansen, M. E. and` Sikkel, D. (Eds.), De leefsituatie van de Nederlandse bevolking 1977, deel 4: wonen en woongenot (Well-being of the population in the Netherlands 1977, part 4: living and living satisfaction), The Hague: Staatsuitgeverij.Google Scholar
Escoufier, Y. (1979). New results and new uses in principal components of instrumental variables. In: 42nd Session of the International Statistical Institute, contributed papers, 149152. Manilla.Google Scholar
Gifi, A. (1981). Non-linear multivariate analysis, Leyden: Department of Data Theory, Leyden University.Google Scholar
Gleason, T. C. (1976). On redundancy in canonical analysis. Psychological Bulletin, 83, 10041006.CrossRefGoogle Scholar
Israëls, A. Z., Bethlehem, J. G., Van Driel, J., Jansen, M. E., Pannekoek, J., De Ree, S. J. M. & Sikkel, D. (1981). Multivariate methods for discrete variables, The Hague: Staatsuitgeverij.Google Scholar
Israëls, A. Z. (1981). Redundantie bij canonische correlatie-analyse (Redundancy in connection to canonical correlation analysis), Voorburg: Netherlands Central Bureau of Statistics.Google Scholar
Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5, 248264.CrossRefGoogle Scholar
Johansson, J. K. (1981). An extension of Wollenberg's redundancy analysis. Psychometrika, 46, 93103.CrossRefGoogle Scholar
Keller, W. J. & Wansbeek, T. J. (1983). Multivariate methods for quantitative and qualitative data. Journal of Econometrics, 22, 91111.CrossRefGoogle Scholar
Leclerc, A. (1974). A study of the relationship between qualitative data. COMPSTAT 1974, Vienna: Physica-Verlag.Google Scholar
Miller, J. K. (1975). In defence to the general canonical correlation index: reply to Nicewander and Wood. Psychological Bulletin, 82, 207209.CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: dual scaling and its applications, Toronto: University of Toronto Press.CrossRefGoogle Scholar
Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā A, 26, 329358.Google Scholar
Rao, C. R. (1973). Linear statistical inference and its applications, New York: Wiley.CrossRefGoogle Scholar
Robert, P. & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25, 257265.CrossRefGoogle Scholar
Sikkel, D. (1981). The relationship between canonical correlations and correspondence analysis, Voorburg: Netherlands Central Bureau of Statistics.Google Scholar
Stewart, D. &Love, W. (1968). A general canonical correlation index. Psychological Bulletin, 70, 160163.CrossRefGoogle ScholarPubMed
Tyler, D. E. (1982). On the optimality of the simultaneous redundancy transformations. Psychometrika, 47, 7786.CrossRefGoogle Scholar
Van de Geer, J. P. (1984). Linear relations amongk sets of variables. Psychometrika, 49, 7994.CrossRefGoogle Scholar
Van den Wollenberg, A. L. (1977). Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika, 42, 207219.CrossRefGoogle Scholar
Young, F. W. (1981). Quantitative analysis of qualitative data. Psychometrika, 46, 357388.CrossRefGoogle Scholar
Young, F. W., De Leeuw, J. & Takane, Y. (1976). Regression with qualitative and quantitative variables: an alternating least squares method with optimal scaling features. Psychometrika, 41, 505529.CrossRefGoogle Scholar