Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T19:06:28.060Z Has data issue: false hasContentIssue false

Regularized Generalized Canonical Correlation Analysis

Published online by Cambridge University Press:  01 January 2025

Arthur Tenenhaus*
Affiliation:
Supelec, Gif-sur-Yvette
Michel Tenenhaus
Affiliation:
HEC Paris, Jouy-en-Josas
*
Requests for reprints should be sent to Arthur Tenenhaus, Department of Signal Processing and Electronics Systems, Supelec, Gif-sur-Yvette, 3 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette cedex, France. E-mail: arthur.tenenhaus@supelec.fr

Abstract

Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and the flexibility of PLS path modeling (the researcher decides which blocks are connected and which are not). Searching for a fixed point of the stationary equations related to RGCCA, a new monotonically convergent algorithm, very similar to the PLS algorithm proposed by Herman Wold, is obtained. Finally, a practical example is discussed.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, M., Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166173.CrossRefGoogle Scholar
Bougeard, S., Hanafi, M., Qannari, E.M. (2007). ACPVI multibloc. Application en épidémiologie animale. Journal de la Société Française de Statistique, 148, 7794.Google Scholar
Bougeard, S., Hanafi, M., Qannari, E.M. (2008). Continuum redundancy-PLS regression: a simple continuum approach. Computational Statistics & Data Analysis, 52, 36863696.CrossRefGoogle Scholar
Burnham, A.J., Viveros, R., MacGregor, J.F. (1996). Frameworks for latent variable multivariate regression. Journal of Chemometrics, 10, 3145.3.0.CO;2-1>CrossRefGoogle Scholar
Carroll, J.D. (1968). A generalization of canonical correlation analysis to three or more sets of variables. Proc. 76th conv. Am. Psych. Assoc., 227228.Google Scholar
Carroll, J.D. (1968b). Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables. Unpublished companion paper to Carroll, J.D. (1968a).CrossRefGoogle Scholar
Chessel, D., Hanafi, M. (1996). Analyse de la co-inertie de K nuages de points. Revue de Statistique Appliquée, 44, 3560.Google Scholar
Chu, M.T., Watterson, J.L. (1993). On a multivariate eigenvalue problem: I. Algebraic theory and power method. SIAM Journal on Scientific and Statistical Computing, 14, 10891106.CrossRefGoogle Scholar
Dahl, T., Næs, T. (2006). A bridge between Tucker-1 and Carroll’s generalized canonical analysis. Computational Statistics & Data Analysis, 50, 30863098.CrossRefGoogle Scholar
Fornell, C., Bookstein, F.L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440452.CrossRefGoogle Scholar
Gifi, A. (1990). Nonlinear multivariate analysis, Chichester: Wiley.Google Scholar
Hanafi, M. (2007). PLS Path modelling: computation of latent variables with the estimation mode B. Computational Statistics, 22, 275292.CrossRefGoogle Scholar
Hanafi, M., Kiers, H.A.L. (2006). Analysis of K sets of data, with differential emphasis on agreement between and within sets. Computational Statistics & Data Analysis, 51, 14911508.CrossRefGoogle Scholar
Hanafi, M., Lafosse, R. (2001). Généralisations de la régression simple pour analyser la dépendance de K ensembles de variables avec un K+1ème. Revue de Statistique Appliquée, 49, 530.Google Scholar
Horst, P. (1961). Relations among m sets of variables. Psychometrika, 26, 126149.CrossRefGoogle Scholar
Jöreskog, K.G. (1970). A general method for the analysis of covariance structure. Biometrika, 57, 239251.CrossRefGoogle Scholar
Kettenring, J.R. (1971). Canonical analysis of several sets of variables. Biometrika, 58, 433451.CrossRefGoogle Scholar
Krämer, N. (2007). Analysis of high-dimensional data with partial least squares and boosting. Doctoral dissertation, Technischen Universität Berlin.Google Scholar
Ledoit, O., Wolf, M. (2004). A well conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88, 365411.CrossRefGoogle Scholar
Leurgans, S.E., Moyeed, R.A., Silverman, B.W. (1993). Canonical correlation analysis when the data are curves. Journal of the Royal Statistical Society, Series B, 55, 725740.CrossRefGoogle Scholar
Lohmöller, J.-B. (1989). Latent variables path modeling with partial least squares, Heildelberg: Physica-Verlag.CrossRefGoogle Scholar
Noonan, R., Wold, H. (1982). PLS path modeling with indirectly observed variables: a comparison of alternative estimates for the latent variable. In Jöreskog, K.G., Wold, H. (Eds.), Systems under indirect observation, Part 2 (pp. 7594). Amsterdam: North-Holland.Google Scholar
Qannari, E.M., Hanafi, M. (2005). A simple continuum regression approach. Journal of Chemometrics, 19, 387392.CrossRefGoogle Scholar
R Development Core Team (2009). R: A language and environment for statistical computing, Vienna: R Foundation for Statistical Computing http://www.R-project.org.Google Scholar
Russett, B.M. (1964). Inequality and instability: the relation of land tenure to politics. World Politics, 16, 442454.CrossRefGoogle Scholar
Schäfer, J., Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1), 32.CrossRefGoogle ScholarPubMed
Shawe-Taylor, J., Cristianini, N. (2004). Kernel methods for pattern analysis, New York: Cambridge University Press.CrossRefGoogle Scholar
Takane, Y., Hwang, H. (2007). Regularized linear and kernel redundancy analysis. Computational Statistics & Data Analysis, 52, 394405.CrossRefGoogle Scholar
Takane, Y., Hwang, H., Abdi, H. (2008). Regularized multiple-set canonical correlation analysis. Psychometrika, 73, 753775.CrossRefGoogle Scholar
Ten Berge, J.M.F. (1988). Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations. Psychometrika, 53, 487494.CrossRefGoogle Scholar
Tenenhaus, A. Kernel generalized canonical correlation analysis. 42ièmes journées de statistique (JdS’10), 2010.Google Scholar
Tenenhaus, M. (2008). Component-based structural equation modelling. Total Quality Management & Business Excellence, 19, 871886.CrossRefGoogle Scholar
Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159205.CrossRefGoogle Scholar
Tenenhaus, M., Hanafi, M. (2010). A bridge between PLS path modeling and multi-block data analysis. In Esposito Vinzi, V., Henseler, J., Chin, W., Wang, H. (Eds.), Handbook of partial least squares (PLS): concepts, methods and applications (pp. 99123). Berlin: Springer.CrossRefGoogle Scholar
Tucker, L.R. (1958). An inter-battery method of factor analysis. Psychometrika, 23, 111136.CrossRefGoogle Scholar
Van de Geer, J.P. (1984). Linear relations among k sets of variables. Psychometrika, 4(9), 7094.Google Scholar
Vinod, H.D. (1976). Canonical ridge and econometrics of joint production. Journal of Econometrics, 4, 147166.CrossRefGoogle Scholar
Vivien, M., Sabatier, R. (2003). Generalized orthogonal multiple co-inertia analysis (-PLS): new multiblock component and regression methods. Journal of Chemometrics, 17, 287301.CrossRefGoogle Scholar
Westerhuis, J.A., Kourti, T., MacGregor, J.F. (1998). Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics, 12, 301321.3.0.CO;2-S>CrossRefGoogle Scholar
Wold, H. (1982). Soft modeling: the basic design and some extensions. In Jöreskog, K.G., Wold, H. (Eds.), Systems under indirect observation, Part 2 (pp. 154). Amsterdam: North-Holland.Google Scholar
Wold, H. (1985). In Kotz, S., Johnson, N.L. (Eds.), Partial least squares (pp. 581591). New York: Wiley.Google Scholar
Wold, S., Martens, H., Wold, H. (1983). The multivariate calibration problem in chemistry solved by the PLS method. In Ruhe, A., Kåstrøm, B. (Eds.), Proc. conf. matrix pencils (pp. 286293). Heidelberg: Springer.CrossRefGoogle Scholar