Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T18:24:45.990Z Has data issue: false hasContentIssue false

A Restricted Four-Parameter IRT Model: The Dyad Four-Parameter Normal Ogive (Dyad-4PNO) Model

Published online by Cambridge University Press:  01 January 2025

Justin L. Kern
Affiliation:
Department of Educational Psychology, University of Illinois at Urbana-Champaign
Steven Andrew Culpepper*
Affiliation:
Department of Statistics, University of Illinois at Urbana-Champaign
*
Correspondence should be made to Steven Andrew Culpepper, Department of Statistics, University of Illinois at Urbana-Champaign, 725 South Wright Street, Champaign, IL61820, USA. Email: sculpepp@illinois.edu

Abstract

Recently, there has been a renewed interest in the four-parameter item response theory model as a way to capture guessing and slipping behaviors in responses. Research has shown, however, that the nested three-parameter model suffers from issues of unidentifiability (San Martín et al. in Psychometrika 80:450–467, 2015), which places concern on the identifiability of the four-parameter model. Borrowing from recent advances in the identification of cognitive diagnostic models, in particular, the DINA model (Gu and Xu in Stat Sin https://doi.org/10.5705/ss.202018.0420, 2019), a new model is proposed with restrictions inspired by this new literature to help with the identification issue. Specifically, we show conditions under which the four-parameter model is strictly and generically identified. These conditions inform the presentation of a new exploratory model, which we call the dyad four-parameter normal ogive (Dyad-4PNO) model. This model is developed by placing a hierarchical structure on the DINA model and imposing equality constraints on a priori unknown dyads of items. We present a Bayesian formulation of this model, and show that model parameters can be accurately recovered. Finally, we apply the model to a real dataset.

Type
Theory and Methods
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitkin, M., & Aitkin, I. (2006). Investigation of the identifiability of the 3PL model in the NAEP 1986 math survey (Technical Report). Washington, DC: National Center for Educational Statistics. Google Scholar
Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37 (6A), 30993132. CrossRefGoogle Scholar
Baker, F. B., & Kim, S. H. (2004). Item response theory: Parameter estimation techniques. New York, NY: Marcel Dekker. CrossRefGoogle Scholar
Barton, M. A., & Lord, F. M.. (1981). An upper asymptote for the three-parameter logistic item-response model (Technical Report No. 80-20). Princeton, NJ: Educational Testing Service. Google Scholar
Chen, Y., Culpepper, S. A., & Liang, F. (2020). A sparse latent class model for cognitive diagnosis. Psychometrika, 85 121153. CrossRefGoogle ScholarPubMed
Culpepper, S. A. (2015). Bayesian estimation of the DINA model with Gibbs sampling. Journal of Educational and Behavioral Statistics, 40 (5), 454476. CrossRefGoogle Scholar
Culpepper, S. A. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika, 81 (4), 11421163. CrossRefGoogle ScholarPubMed
Culpepper, S. A. (2017). The prevalence and implications of slipping on low-stakes large-scale assessments. Journal of Educational and Behavioral Statistics, 42 706725. CrossRefGoogle Scholar
Culpepper, S. A. (2019). fourPNO: Bayesian 4 Parameter Item Response Model [Computer software manual]. Google Scholar
de la Torre, J., & Douglas, J. A. (2004) Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69 (3), 333353. CrossRefGoogle Scholar
Feuerstahler, L. M., & Waller, N. G. (2014). Abstract: Estimation of the 4-parameter model with marginal maximum likelihood. Multivariate Behavioral Research, 49 (3), 285. CrossRefGoogle ScholarPubMed
Gabrielsen, A. (1978). Consistency and identifiability. Journal of Econometrics, 8 (2), 261263. CrossRefGoogle Scholar
Gao, F., & Chen, L. (2005). Bayesian or non-Bayesian: A comparison study of item parameter estimation in the three-parameter logistic model. Applied Measurement in Education, 18 (4), 351380. CrossRefGoogle Scholar
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. Boca Raton: FLChapman & Hall/CRC. Google Scholar
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7 (4), 457472. CrossRefGoogle Scholar
Gu, Y., & Xu, G. (2019). Sufficient and necessary conditions for the identifiability of the Q-matrix. Statistica Sinica, Google Scholar
Han, K. T. (2012). Fixing the c parameter in the three-parameter logistic model. Practical Assessment, Research, and Evaluation, 17 124. Google Scholar
Harwell, M. R., Baker, F. B., & Zwarts, M. (1988). Item parameter estimation via marginal maximum likelihood and an EM algorithm: A didactic. Journal of Educational Statistics, 13 (3), 243271. CrossRefGoogle Scholar
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25 (3), 258272. CrossRefGoogle Scholar
Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19 (5A), 17901817. CrossRefGoogle ScholarPubMed
Loken, E., & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63 509525. CrossRefGoogle ScholarPubMed
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64 (2), 187212. CrossRefGoogle Scholar
Maris, G., & Bechger, T. (2009). On interpreting the model parameters for the three parameter logistic model. Measurement, 7 (2), 7588. Google Scholar
Meng, X., Xu, G., Zhang, J., & Tao, J. (2019). Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework. British Journal of Mathematical and Statistical Psychology, Google Scholar
Merkle, E. C., Furr, D., & Rabe-Hesketh, S. (2019). Bayesian comparison of latent variable models: Conditional versus marginal likelihoods. Psychometrika, 84 (3), 802829. CrossRefGoogle ScholarPubMed
Partchev, I. (2009). 3PL: A useful model with a mild estimation problem. Measurement, 7 (2), 9496. Google Scholar
Rulison, K. L., & Loken, E. (2009). I’ve fallen and I can’t get up: Can high-ability students recover from early mistakes in CAT?. Applied Psychological Measurement, 33 83101. CrossRefGoogle ScholarPubMed
San Martín, E., González, J., & Tuerlinckx, F. (2009). Identified parameters, parameters of interest and their relationships. Measurement, 7 (2), 97105. Google Scholar
San Martín, E., González, J., & Tuerlinckx, F. (2015). On the unidentifiability of the fixed-effects 3PL model. Psychometrika, 80 (2), 450467. CrossRefGoogle ScholarPubMed
San Martín, E., Rolin, J-M., & Castro, L. M. (2013). Identification of the 1PL model with guessing parameter: Parametric and semi-parametric results. Psychometrika, 78 (2), 341379. CrossRefGoogle ScholarPubMed
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64 (4), 583639. CrossRefGoogle Scholar
Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika, 51 (4), 589601. CrossRefGoogle Scholar
Thissen, D. (2009). On interpreting the parameters for any item response model. Measurement, 7 (2), 106110. Google Scholar
Waller, N. G., & Feuerstahler, L. M. (2017). Bayesian modal estimation of the four-parameter item response model in real, realistic, and idealized data sets. Multivariate Behavioral Research, 52 350370. 10.1080/00273171.2017.1292893 28306347 CrossRefGoogle ScholarPubMed
Waller, N. G., & Reise, S. P. Embretson, S. E. (2010). Measuring psychopathology with non-standard item response theory models: Fitting the four-parameter model to the Minnesota Multiphasic Personality Inventory. Measuring psychological constructs: Advances in model-based approaches, Washington, DC: American Psychological Association. 147173. CrossRefGoogle Scholar
Zheng, C., Meng, X., Guo, S., & Liu, Z. (2018). Expectation-maximization-maximization: A feasible MLE algorithm for the three-parameter logistic model based on a mixture modeling reformulation. Frontiers in Psychology, 8 110. CrossRefGoogle ScholarPubMed