Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T11:17:51.218Z Has data issue: false hasContentIssue false

Rotation in Correspondence Analysis from the Canonical Correlation Perspective

Published online by Cambridge University Press:  01 January 2025

Naomichi Makino*
Affiliation:
Benesse Educational Research and Development Institute
*
Correspondence should be made to Naomichi Makino, Benesse Educational Research and Development Institute, 1-34, Ochiai, Tama-shi, Tokyo, Japan. Email: n-makino@mail.benesse.co.jp

Abstract

Correspondence analysis (CA) is a statistical method for depicting the relationship between two categorical variables, and usually places an emphasis on graphical representations. In this study, we discuss a CA formulation based on canonical correlation analysis (CCA). In CCA-based formulation, the correlations within and between row/column categories in a reduced dimensional space can be expressed by canonical variables. However, in existing CCA-based formulations, only orthogonal rotation is permitted. Herein, we propose an alternative CCA-based formulation that permits oblique rotation. In the proposed formulation, the CA loss function can be defined as maximizing the generalized coefficient of determination, which is a measure of proximity between two variables. Simulation studies and real data examples are presented in order to demonstrate the benefits of the proposed formulation.

Type
Theory & Methods
Copyright
Copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, K., (2004). Oblique Promax rotation applied to the solutions in multiple correspondence analysis Behaviormetrika 31 112 10.2333/bhmk.31.1CrossRefGoogle Scholar
Ainsworth, M. D., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the Strange Situation. Erlbaum.Google Scholar
Ainsworth, M. D. S., & Wittig, B. A. (1969). Attachment and exploratory behavior of one year olds in a strange situation. In B. M. Foss (Ed.), Determinants of infant behavior (Vol. 4, pp. 113–136). Methuen.Google Scholar
Beh, E. J., & Lombardo, R. (2014). Correspondence analysis: Theory, practice and new strategies. Wiley.Google Scholar
Bernaards, C. A., & Jennrich, R. I., (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis Educational and Psychological Measurement 65 676696 10.1177/0013164404272507CrossRefGoogle Scholar
Browne, M. W., (2001). An overview of analytic rotation in exploratory factor analysis Multivariate Behavioral Research 36 111150 10.1207/S15327906MBR3601_05CrossRefGoogle Scholar
Carroll, J. B., (1953). An analytical solution for approximating simple structure in factor analysis Psychometrika 18 2338 10.1007/BF02289025CrossRefGoogle Scholar
Cliff, N., & Krus, D. J., (1976). Interpretation of canonical analysis: Rotated vs. unrotated solutions Psychometrika 41 3542 10.1007/BF02291696CrossRefGoogle Scholar
Darlington, R.B., Weinberg, S.L., & Walberg, H.J. (1973). Canonical variate analysis and related techniques. Review of Educational Research,43, 433–454.CrossRefGoogle Scholar
De Leeuw, J., & Mair, P., (2009). Simple and canonical correspondence analysis using the R package anacor Journal of Statistical Software 31 118 10.18637/jss.v031.i05CrossRefGoogle Scholar
George, C., Kaplan, N., & Main, M. (1985). The adult attachment interview. Unpublished manuscript, University of California at Berkley, Berkley.Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis. Wiley.Google Scholar
Glass, D. V. (1954). Social Mobility in Britain. Free Press.Google Scholar
Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press.Google Scholar
Greenacre, M. (2006a). From simple to multiple correspondence analysis. In Greenacre, M., & Blasius, J. (Eds), Multiple correspondence analysis and related methods (pp. 41–76), CRC press.CrossRefGoogle Scholar
Greenacre, M. J. (2006b). Tying up the loose ends in simple, multiple, joint correspondence analysis. In A. Rizzi, & M. Vichi, Maurizio (Eds), Compstat 2006-proceedings in computational statistics (pp. 163–185). Physica-Verlag HD.CrossRefGoogle Scholar
Gu, F., & Wu, H., (2018). Simultaneous canonical correlation analysis with invariant canonical loadings Behaviormetrika 45 111132Google Scholar
Hotelling, H., (1936). Relations between two sets of variates Biometrika 28 321377 10.1093/biomet/28.3-4.321CrossRefGoogle Scholar
Hwang, H., Tomiuk, M. A., & Takane, Y. (2009). Correspondence analysis, multiple correspondence analysis and recent developments. In R. E. Millsap & A. Maydeu-Olivares (Eds), Handbook of quantitative methods in psychology(pp. 243–263). Sage Publications.CrossRefGoogle Scholar
Jennrich, R. I., (2002). A simple general method for oblique rotation Psychometrika 67 720 10.1007/BF02294706CrossRefGoogle Scholar
Kiers, H. A. L., (1994). SIMPLIMAX: Oblique rotation to an optimal target with simple structure Psychometrika 59 567579 10.1007/BF02294392CrossRefGoogle Scholar
Levine, M. S. (1977). Canonical analysis and factor comparison. Sage.CrossRefGoogle Scholar
Lorenzo-Seva, U., (2003). A factor simplicity index Psychometrika 68 4960 10.1007/BF02296652CrossRefGoogle Scholar
Lorenzo-Seva, U., van de Velden, M., Kiers, H., & , A, L. (2009). Oblique rotation in correspondence analysis: A step forward in the search for the simplest interpretation. British Journal of Mathematical and statistical Psychology, 62, 583–600.CrossRefGoogle Scholar
Reynolds, T. J., & Jackosfsky, E. F., (1981). Interpreting canonical analysis: The use of orthogonal transformations Educational and Psychological Measurement 41 661671 10.1177/001316448104100305CrossRefGoogle Scholar
Satomura, H., & Adachi, K., (2013). Oblique Rotaton in Canonical Correlation Analysis Reformulated as Maximizing the Generalized Coefficient of Determination Psychometrika 78 526537 10.1007/s11336-012-9310-4CrossRefGoogle ScholarPubMed
Tucker, L. R. (1951). A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Department of the Army, Washington, DC.Google Scholar
Ten Berge, J. M. F. (1993). Least squares optimization in multivariate analysis. DSWO Press.Google Scholar
Van de Velden, M. (2000). Topics in correspondence analysis. Ph.D. thesis, Tinbergen Institute Research Series, 238, University of Amsterdam.Google Scholar
Van de Velden, M., & Kiers, H. A. (2003). An application of rotation in correspondence analysis. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, & J. J. Meulman (Eds.), New developments in psychometrics (pp. 471–478). Springer.CrossRefGoogle Scholar
Van de Velden, M., & Kiers, H. A., (2005). Rotation in correspondence analysis Journal of Classification 22 251271 10.1007/s00357-005-0016-5CrossRefGoogle Scholar
Van der Burg, E., & De Leeuw, J., (1983). Non-linear canonical correlation British Journal of Mathematical and Statistical Psychology 36 5480 10.1111/j.2044-8317.1983.tb00765.xCrossRefGoogle Scholar
Van Ijzendoorn, M. H., (1995). Adult attachment representations, parental responsiveness, and infant attachment: A meta-analysis on the predictive validity of the Adult Attachment Interview Psychological Bulletin 117 387 10.1037/0033-2909.117.3.387CrossRefGoogle ScholarPubMed
Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. State University of New York Press.Google Scholar
Yamashita, N., (2012). Canonical correlation analysis formulated as maximizing sum of squared correlations and rotation of structure matrices Japanese Journal of Behaviormetrics 39 19 (in Japanese)Google Scholar
Yanai, H. (1974). Unification of various techniques of multivariate analysis by means of generalized coefficient of determination. Japanese Journal of Behaviormetrics, 1, 46–54 (in Japanese).Google Scholar