Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T07:09:15.497Z Has data issue: true hasContentIssue false

Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis

Published online by Cambridge University Press:  01 January 2025

Asim Ansari*
Affiliation:
Columbia Business School, Columbia University
Raghuram Iyengar
Affiliation:
The Wharton School, University of Pennsylvania
*
Requests for reprints should be sent to Asim Ansari, Columbia Business School, Columbia University, 517 Uris Hall, 3022 Broadway, New York, NY 10027, USA. E-mail: maa48@columbia.edu;

Abstract

We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven dynamics. Each component of our model is specified semiparametrically using Dirichlet process (DP) priors. The utility (latent variable) component of our model allows the alternative-specific utility errors to semiparametrically deviate from a normal distribution. This generates a robust alternative to popular Thurstonian specifications that are based on underlying normally distributed latent variables. Our second component focuses on flexibly modeling cross-sectional heterogeneity. The semiparametric specification allows the heterogeneity distribution to mimic either a finite mixture distribution or a continuous distribution such as the normal, whichever is supported by the data. Thus, special features such as multimodality can be readily incorporated without the need to overtly search for the best heterogeneity specification across a series of models. Finally, we allow for parameter-driven dynamics using a semiparametric state-space approach. This specification adds to the literature on robust Kalman filters. The resulting framework is very general and integrates divergent strands of the literatures on flexible choice models, Bayesian nonparametrics and robust time series specifications. Given this generality, we show how several existing Thurstonian models can be obtained as special forms of our model. We describe Markov chain Monte Carlo methods for the inference of model parameters, report results from two simulation studies and apply the model to consumer choice data from a frequently purchased product category. The results from our simulations and application highlight the benefits of using our semiparametric approach.

Type
Original Paper
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, J., Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669679.CrossRefGoogle Scholar
Albert, J., & Chib, S. (1997). Bayesian methods for cumulative, sequential and two-step ordinal data regression models. Technical report, Department of mathematics and statistics, Bowling Green state university.Google Scholar
Barnard, J., McCulloch, R., Meng, X.-L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 12811311.Google Scholar
Basu, S., Mukhopadhyay, S. (2000). Binary response regression with normal scale mixture links. In Dey, D., Ghosh, S., Mallick, B. (Eds.), Generalized linear models: a Bayesian perspective (pp. 231241). NY: Marcel Dekker Inc..Google Scholar
Blackwell, D., MacQueen, J. B. (1973). Ferguson distribution via polya urn schemes. The Annals of Statistics, 1, 353355.CrossRefGoogle Scholar
Böckenholt, U. (1990). Multivariate Thurstonian models. Psychometrika, 55, 391403.CrossRefGoogle Scholar
Böckenholt, U. (2001). Mixed effects analysis of rank ordered data. Psychometrika, 66, 4562.CrossRefGoogle Scholar
Böckenholt, U. (2002). A Thurstonian analysis of preference change. Journal of Mathematical Psychology, 46, 300314.CrossRefGoogle Scholar
Bradlow, E. T., Zaslavsky, A. M. (1999). A hierarchical latent variable model for ordinal data from a customer satisfaction survey with “no answer–responses. Journal of the American Statistical Association, 94, 4352.Google Scholar
Bush, C. A., MacEachern, S. N. (1996). A semiparametric Bayesian model for randomized block designs. Biometrika, 83, 275285.CrossRefGoogle Scholar
Carter, C. K., Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81, 541553.CrossRefGoogle Scholar
Chan, W., Bentler, P. M. (1998). Covariance structure analysis of ordinal ipsative data. Psychometrika, 63, 360369.CrossRefGoogle Scholar
Chib, S., Hamilton, B. H. (2002). Semiparametric Bayes analysis of longitudinal data treatment models. Journal of Econometrics, 110, 6789.CrossRefGoogle Scholar
Chib, S., Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85(2), 347361.CrossRefGoogle Scholar
Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89, 268277.CrossRefGoogle Scholar
Escobar, M. D. (1995). Nonparametrics Bayesian methods in hierarchical models. Journal of Statistical Inference and Planning, 43, 97106.CrossRefGoogle Scholar
Escobar, M. D., & West, M. (1998). Computing Bayesian nonparametric hierarchical models. Discussion Paper, 92-A20, Duke University, ISDS.Google Scholar
Fahrmeir, L., Tutz, G. (1994). Multivariate statistical modeling based on generalized linear models, New York: Springer-Verlag.CrossRefGoogle Scholar
Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209230.CrossRefGoogle Scholar
Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. The Annals of Statistics, 2, 615629.CrossRefGoogle Scholar
Fox, J.-P., Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 269286.CrossRefGoogle Scholar
Gelman, A., Meng, X.-L., Stern, H. S. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion and rejoinder). Statistica Sinica, 6, 733807.Google Scholar
Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica, 57, 13171340.CrossRefGoogle Scholar
Hajivassiliou, V. (1990) “Smooth simulation estimation of panel data LDV models– Working paper, Deptartment of Economics, Yale University.Google Scholar
Harville, D. A. (1997). Matrix algebra from a statistician’s perspective, New York: Springer Verlag.CrossRefGoogle Scholar
Hoijtink, H. J. A., Molenaar, W. (1997). A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks. Psychometrika, 62, 171189.CrossRefGoogle Scholar
Ishwaran, H., James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of American Statistical Association, 96, 161173.CrossRefGoogle Scholar
Kass, R., Raftery, A. (1995). Bayes Factors. Journal of American Statistical Association, 90, 773795.CrossRefGoogle Scholar
Keane, M. (1994). A computationally practical simulation estimator for panel data. Econometrica, 62, 95116.CrossRefGoogle Scholar
Leichty, J. C., Fong, D. K. H., & DeSarbo, W. (2005). Dynamic Models with Individual Level Heterogeneity: Applied to Evolution During Conjoint Studies. Forthcoming, Marketing Science.CrossRefGoogle Scholar
Longford, N. (1993). Random coefficient models, Oxford: Clarendon Press.Google Scholar
MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics Part B-Simulation and Computation, 23, 727741.CrossRefGoogle Scholar
Masriliez, C. J., Martin, R. D. (1977). Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Transactions on Automatic Control, 22, 361371.CrossRefGoogle Scholar
Maydeu-Olivares, A. (1999). Thurstonian modeling of ranking data via mean and covariance structure analysis. Psychometrika, 64, 325340.CrossRefGoogle Scholar
Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209228.CrossRefGoogle Scholar
McCulloch, R., Rossi, P. (1994). An exact likelihood analysis of the multinomial probit model. Journal of Econometrics, 64, 207240.CrossRefGoogle Scholar
Meinhold, R. J., Singpurwalla, N. D. (1989). Robustification of Kalman filter models. Journal of the American Statistical Association, 84, 479486.CrossRefGoogle Scholar
Neal, R. M. (2003). Slice sampling (with discussion). Annals of Statistics, 31, 705767.CrossRefGoogle Scholar
Takane, Y. (1987). Analysis of covariance structures and probabilistic binary choice data. Communication and Cognition, 20, 4562.Google Scholar
Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 79, 281299.Google Scholar
Thurstone, L. L. (1931). Rank order as a psychological method. Journal of Experimental Psychology, 14, 187201.CrossRefGoogle Scholar
Van Heerde, H. J., Mela, C. F., Manchanda, P. (2004). The Dynamic Effect of Innovation on Market Structure. Journal of Marketing Research, 41, 166183.CrossRefGoogle Scholar
Wedel, M., Kamakura, W. A. (1998). Marketing segmentation: conceptual and methodological foundations, New York: Kluwer Academic Publishers.Google Scholar
West, M. (1992) Hyperparameter estimation in Dirichlet process mixture models. Discussion Paper, 92-03, Duke University, ISDS.Google Scholar
Yao, G., Böckenholt, U. (1999). Bayesian estimation of Thurstonian ranking models based on the Gibbs sampler. British Journal of Mathematical and Statistical Psychology, 52, 7992.CrossRefGoogle Scholar