Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T06:53:57.328Z Has data issue: true hasContentIssue false

Shizuhiko Nishisato. Elements of Dual Scaling: An Introduction to Practical Data Analysis. Hillsdale, NJ: Lawrence Erlbaum, 1994, xiv + 381, $79.95.

Review products

Shizuhiko Nishisato. Elements of Dual Scaling: An Introduction to Practical Data Analysis. Hillsdale, NJ: Lawrence Erlbaum, 1994, xiv + 381, $79.95.

Published online by Cambridge University Press:  01 January 2025

Michael J. Greenacre*
Affiliation:
Universitat Pompeu Fabra

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
© 1996 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Böckenholt, U., Takane, Y. (1994). Linear constraints in correspondence analysis. In Greenacre, M. J., Blasius, J. (Eds.), Correspondence analysis in the social sciences (pp. 112127). London: Academic Press.Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis, Chichester: Wiley.Google Scholar
Greenacre, M. J. (1984). Theory and applications of correspondence analysis, London: Academic Press.Google Scholar
Lebart, L., Morineau, A., Warwick, K. (1984). Multivariate descriptive statistical analysis, New York: Wiley.Google Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its application, Toronto: University of Toronto Press.CrossRefGoogle Scholar
Nishisato, S., Nishisato, I. (1984). Introduction to dual scaling, Toronto, Canada: MicroStats.Google Scholar
Takane, Y., Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables. Psychometrika, 56, 667684.CrossRefGoogle Scholar
ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigen-vector technique for multivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar