Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T21:39:22.923Z Has data issue: true hasContentIssue false

Some Improvements in Confidence Intervals for Standardized Regression Coefficients

Published online by Cambridge University Press:  01 January 2025

Paul Dudgeon*
Affiliation:
The University of Melbourne
*
Correspondence should be made to Paul Dudgeon, Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia. Email: dudgeon@unimelb.edu.au

Abstract

Yuan and Chan (Psychometrika 76:670–690, 2011. doi:10.1007/S11336-011-9224-6) derived consistent confidence intervals for standardized regression coefficients under fixed and random score assumptions. Jones and Waller (Psychometrika 80:365–378, 2015. doi:10.1007/S11336-013-9380-Y) extended these developments to circumstances where data are non-normal by examining confidence intervals based on Browne’s (Br J Math Stat Psychol 37:62–83, 1984. doi:10.1111/j.2044-8317.1984.tb00789.x) asymptotic distribution-free (ADF) theory. Seven different heteroscedastic-consistent (HC) estimators were investigated in the current study as potentially better solutions for constructing confidence intervals on standardized regression coefficients under non-normality. Normal theory, ADF, and HC estimators were evaluated in a Monte Carlo simulation. Findings confirmed the superiority of the HC3 (MacKinnon and White, J Econ 35:305–325, 1985. doi:10.1016/0304-4076(85)90158-7) and HC5 (Cribari-Neto and Da Silva, Adv Stat Anal 95:129–146, 2011. doi:10.1007/s10182-010-0141-2) interval estimators over Jones and Waller’s ADF estimator under all conditions investigated, as well as over the normal theory method. The HC5 estimator was more robust in a restricted set of conditions over the HC3 estimator. Some possible extensions of HC estimators to other effect size measures are considered for future developments.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi:10.1007/s11336-017-9563-z) contains supplementary material, which is available to authorized users.

References

Arminger, G. & Schoenberg, R. J. (1989). Pseudo-maximum likelihood estimation and a test for misspecification in mean and covariance structure models. Psychometrika 54, 409425CrossRefGoogle Scholar
Bentler, P. M. & Lee, S. Y. (1983). Covariance structures under polynomial constraints: Applications to correlation and alpha-type structure models. Journal of Educational Statistics 8, 207222CrossRefGoogle Scholar
Bentler, P. M., & Wu, E. J. C. (2000–2008). EQS version 6.2 [Computer software]. Encino, CA.: Multivariate Software, Inc.Google Scholar
Bradley, J. V. (1978). Robustness?. British Journal of Mathematical and Statistical Psychology 31, 144152CrossRefGoogle Scholar
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology 37, 6283CrossRefGoogle ScholarPubMed
Browne, M. W. Mels, G. & Cowan, M. (2010). Path analysis: RAMONA in SYSTAT version 13 [software] Chicago, IL: Systat Software IncGoogle Scholar
Chan, W. Yung, Y.-F. & Bentler, P. M. (1995). A note on using an unbiased weight matrix in the ADF test statistic. Multivariate Behavioral Research 30, 453459CrossRefGoogle ScholarPubMed
Cochran, W. G. (1952). The χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}$$\end{document} test of goodness of fit. Annals of Mathematical Statistics 23, 315345CrossRefGoogle Scholar
Cohen, J. Cohen, P. West, S. G. & Aiken, L. S. (2003). Applied multiple regression/ correlation analysis for the behavioral sciences 3Mahwah, NJ: Lawrence ErlbaumGoogle Scholar
Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics and Data Analysis 45, 215233CrossRefGoogle Scholar
Cribari-Neto, F. & Da Silva, W. B. (2011). A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model. Advances in Statistical Analysis 95, 129146CrossRefGoogle Scholar
Cribari-Neto, F. Souza, T. C. & Vasconcellos, KLP (2007). Inference under heteroskedasticity and leveraged data. Communications in Statistics: Theory and Methods 36, 18771888CrossRefGoogle Scholar
Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin 105, 317327CrossRefGoogle Scholar
Efron, B. & Tibshirani, R. (1998). An introduction to the bootstrap Boca Raton, FL: Chapman and HallGoogle Scholar
Finney, S. J. DiStefano, C. Hancock, G. R. & Muller, R. O. (2013). Nonnormal and categorical data in structural equation modeling. Structural equation modeling: A second course 2Charlotte, NC: Information Age Publishing Inc 439492Google Scholar
Hayes, A. F. & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior Research Methods 39, 709722CrossRefGoogle ScholarPubMed
Headrick, T. C. (2002). Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions. Computational Statistics and Data Analysis 40, 865–711CrossRefGoogle Scholar
Headrick, T. C. (2012). Statistical simulation: Power method polynomials and other transformations Boca Raton, FL: CRC PressGoogle Scholar
Headrick, T. C. Sheng, Y. & Hodis, F. (2007). Numerical computing and graphics for the power method transformation using mathematica. Journal of Statistical Software 19 (2), 117CrossRefGoogle Scholar
Hoogland, J. J. & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and meta-analysis. Sociological Methods and Research 26, 329367CrossRefGoogle Scholar
Hu, L.-T. Bentler, P. M. & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted?. Psychological Bulletin 112, 351362CrossRefGoogle ScholarPubMed
Jones, J. A. & Waller, N. G. (2013). Computing confidence intervals for standardized regression coefficients. Psychological Methods 18, 435453CrossRefGoogle ScholarPubMed
Jones, J. A. & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika 80, 365378CrossRefGoogle ScholarPubMed
Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software 20, 124CrossRefGoogle Scholar
Kowalchuk, R. & Headrick, T. C. (2010). Simulating multivariate g-and-h distributions. British Journal of Mathematical and Statistical Psychology 63, 6374CrossRefGoogle ScholarPubMed
Long, J. S. & Ervin, L. H. (2000). Using heteroskedasticity consistent standard errors in the linear regression model. The American Statistician 54, 217224CrossRefGoogle Scholar
MacKinnon, J. G. & White, H. (1985). Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics 35, 305325CrossRefGoogle Scholar
Magnus, J. R. & Neudecker, H. (2007). Matrix differential calculus with applications in statistics and economics 3Chichester: WileyGoogle Scholar
Mathworks, Inc. (2015). MATLAB, Version 8.5.0.197613 (R2015a) [Computer software]. Natick, MA: Mathworks, Inc.Google Scholar
Muthén, B. O. & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods 17, 313335CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed.) [Computer software]. Los Angeles, CA: Muthén & Muthén.Google Scholar
Ng, M., & Wilcox, R. R. (2009). Level robust methods based on the least squares regression estimator. Journal of Modern Applied Statistical Methods, 8(Issue 2, Article 5), 384–395. From http://digitalcommons.wayne.edu/jmasm/vol8/iss2/5CrossRefGoogle Scholar
Nel, D. G. (1980). On matrix differentiation in statistics. South African Statistics Journal 14, 137193Google Scholar
Olvera Astivia, O. L. & Zumbo, B. (2015). A cautionary note on the use of the Vale and Maurelli method to generate multivariate, nonnormal data for simulation purposes. Educational and Psychological Measurement 75, 541567CrossRefGoogle ScholarPubMed
R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.orgGoogle Scholar
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software 48, 136CrossRefGoogle Scholar
Rozeboom, W. W. (1966). Foundations of the theory of prediction Homewood, Illinois: Dorsey PressGoogle Scholar
Sampson, A. R. (1974). A tale of two regressions. Journal of the American Statistical Association 69, 682689CrossRefGoogle Scholar
Savalei, V. (2014). Understanding robust corrections in structural equation modeling. Structural Equation Modeling 21, 149160CrossRefGoogle Scholar
Serlin, R. C. (2000). Testing for robustness in Monte Carlo studies. Psychological Methods 5, 230240CrossRefGoogle ScholarPubMed
StataCorp., (2015). Stata programming reference manual: Release 14. College Station, TX: StataCorp LP.Google Scholar
Steiger, J. H. (2015). SEPath: Structural equation modelling program (version 12.7) [Computer software]. Tulsa, OK: StatSoft, Inc.Google Scholar
Stevens, J. P. (2009). Applied multivariate statistics for the social sciences 5New York: Psychology Press Taylor & FrancisGoogle Scholar
Vale, C. D. & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika 48, 465471CrossRefGoogle Scholar
Waller, N. G. & Jones, J. A. (2010). Correlation weights in multiple regression. Psychometrika 75, 5869CrossRefGoogle Scholar
Waller, N. G. & Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. Psychometrika 76, 410439CrossRefGoogle Scholar
Waller, N. G., & Jones, J. A. (2015). Fungible: Fungible coefficients and Monte Carlo functions (R package version 1.2). Retrieved from https://cran.r-project.org/Google Scholar
Wasserman, L. (2003). All of statistics: A concise course in statistical inference New York: SpringerGoogle Scholar
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817838CrossRefGoogle Scholar
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50, 125CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P. M. (1998a). Robust mean and covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 51, 63–88. doi:10.1111/j.2044-8317.1998.tb00667.x.CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P. M. (1998b). Structural equation modeling with robust covariances. In A. E. Raftery (Ed.), Sociological Methodology 1998 (pp. 363–396). Boston, MA: Blackwell. doi:10.1111/0081-1750.00052CrossRefGoogle Scholar
Yuan, K.-H. & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika 76, 670690CrossRefGoogle ScholarPubMed
Yuan, K.-H. & Hayashi, K. (2006). Standard errors in covariance structure models: Asymptotics versus bootstrap. British Journal of Mathematical and Statistical Psychology 59, 397417CrossRefGoogle ScholarPubMed
Yung, Y.-F. & Bentler, P. M. (1994). Bootstrap-corrected ADF test statistics in covariance structure analysis. British Journal of Mathematical and Statistical Psychology 47, 6384CrossRefGoogle ScholarPubMed
Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 16, 1–17. Retrieved from http://www.jstatsoft.org/v11/i10CrossRefGoogle Scholar
Supplementary material: File

Dudgeon supplementary material

Dudgeon supplementary material
Download Dudgeon supplementary material(File)
File 333.8 KB