Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T17:43:22.578Z Has data issue: false hasContentIssue false

Some Neglected Problems in IRT

Published online by Cambridge University Press:  01 January 2025

Gerhard H. Fischer*
Affiliation:
University of Vienna
*
Requests for reprints should be sent to Gerhard H. Fischer, Institut für Psychologie, Universität Wien, Liebiggasse 5, A-1010 Wien, AUSTRIA.

Abstract

The paper addresses three neglected questions from IRT. In section 1, the properties of the “measurement” of ability or trait parameters and item difficulty parameters in the Rasch model are discussed. It is shown that the solution to this problem is rather complex and depends both on general assumptions about properties of the item response functions and on assumptions about the available item universe. Section 2 deals with the measurement of individual change or “modifiability” based on a Rasch test. A conditional likelihood approach is presented that yields (a) an ML estimator of modifiability for given item parameters, (b) allows one to test hypotheses about change by means of a Clopper-Pearson confidence interval for the modifiability parameter, or (c) to estimate modifiability jointly with the item parameters. Uniqueness results for all three methods are also presented. In section 3, the Mantel-Haenszel method for detecting DIF is discussed under a novel perspective: What is the most general framework within which the Mantel-Haenszel method correctly detects DIF of a studied item? The answer is that this is a 2PL model where, however, all discrimination parameters are known and the studied item has the same discrimination in both populations. Since these requirements would hardly be satisfied in practical applications, the case of constant discrimination parameters, that is, the Rasch model, is the only realistic framework. A simple Pearson x2 test for DIF of one studied item is proposed as an alternative to the Mantel-Haenszel test; moreover, this test is generalized to the case of two items simultaneously studied for DIF.

Type
Original Paper
Copyright
Copyright © 1995 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Presidential Address delivered at the 30th Annual Meeting of the Psychometric Society, 16–18 June 1995 in Minneapolis.

This research was supported in part by the Fonds zur Förderung der Wissenschaftlichen Forschung under Grant No. P10118-HIS.

References

Aczél, J. (1966). Lectures on functional equations and their applications, New York: Academic Press.Google Scholar
Alper, T. M. (1987). A classification of all order-preserving homeomorphism groups of the reals that satisfy finite uniqueness. Journal of Mathematical Psychology, 31, 135154.CrossRefGoogle Scholar
Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Andersen, E. B. (1985). Estimating latent correlations between repeated testings. Psychometrika, 50, 316.CrossRefGoogle Scholar
Baker, F. B. (1992). Item response theory, New York: Marcel Dekker.Google Scholar
Bereiter, C. (1963). Some persisting dilemmas in the measurement of change. In Harris, C. W. (Eds.), Problems in measuring change (pp. 320). Madison: The University of Wisconsin Press.Google Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 395479). Reading, MA: Addison-Wesley.Google Scholar
Churchhouse, R. F. (1981). Handbook of applicable mathmatics, Vol. III, Chichester and New York: J. Wiley.Google Scholar
Colonius, H. (1979). Zur Eindeutigkeit der Parameter im Rasch-Modell [On the uniqueness of parameters in the Rasch model]. Psychologische Beiträge, 21, 414416.Google Scholar
Cronbach, L. J., Furby, L. (1970). How should we measure change—or should we?. Psychological Bulletin, 74, 6880.CrossRefGoogle Scholar
Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495515.CrossRefGoogle Scholar
Fischer, G. H. (1972). A measurement model for the effect of mass-media. Acta Psychologica, 36, 207220.CrossRefGoogle Scholar
Fischer, G. H. (1974). Einführung in die Theorie psychologischer Tests [Introduction to mental test theory. In German], Berne: Huber.Google Scholar
Fischer, G. H. (1976). Some probabilistic models for measuring change. In de Gruijter, D. N. M., van der Kamp, L. J. Th. (Eds.), Advances in psychological and educational measurement (pp. 97110). New York: J. Wiley.Google Scholar
Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46, 5977.CrossRefGoogle Scholar
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fischer, G. H. (1987). Applying the principles of specific objectivity and generalizability to the measurement of change. Psychometrika, 52, 565587.CrossRefGoogle Scholar
Fischer, G. H. (1988). Spezifische Objektivität: Eine wissenschaftstheoretische Grundlage des Rasch-Modells [Specific objectivity: A theoretical foundation of the Rasch model. In German]. In Kubinger, K. D. (Eds.), Moderne Testtheorie (pp. 87111). Weinhein: Beltz.Google Scholar
Fischer, G. H. (1989). An IRT-based model for dichotomous longitudinal data. Psychometrika, 54, 599624.CrossRefGoogle Scholar
Fischer, G. H. (1993). Notes on the Mantel-Haenszel procedure and another chi-squared test for the assessment of DIF. Methodika, 7, 88100.Google Scholar
Fischer, G. H. (1995). Derivations of the Rasch model. In Fischer, G. H., Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 1538). New York: Springer-Verlag.Google Scholar
Fischer, G. H. (1995). The linear logistic test model. In Fischer, G. H., Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 131155). New York: Springer-Verlag.Google Scholar
Fischer, G. H., Parzer, P. (1991). An extension of the rating scale model with an application to the measurement of change. Psychometrika, 56, 637651.CrossRefGoogle Scholar
Fischer, G. H., Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 59, 177192.CrossRefGoogle Scholar
Glas, C. A. W., Verhelst, N. D. (1995). Testing the Rasch model. In Fischer, G. H., Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 6995). New York: Springer-Verlag.Google Scholar
Guttmann, G., Etlinger, S. C. (1991). Susceptibility to stress and anxiety in relation to performance, emotion, and personality: The ergopsychometric approach. In Spielberger, C. D., Sarason, I. G., Strelau, J., Brebner, J. M. T. (Eds.), Stress and anxiety, Vol. 13 (pp. 2352). New York: Hemisphere Publishing.Google Scholar
Hambleton, R. K. (1989). Principles and selected applications of item response theory. In Linn, R. L. (Eds.), Educational measurement (pp. 147200). London: Collier Macmillan.Google Scholar
Hamerle, A. (1979). Über die meßtheoretischen Grundlagen von Latent-Trait-Modellen [On measurement-theoretic foundations of latent trait models. In German.]. Archiv für Psychologie, 132, 1939.Google Scholar
Hamerle, A. (1982). Latent-Trait-Modelle [Latent trait models], Weinheim: Beltz.Google Scholar
Harris, C. W. (1963). Problems in measuring change, Madison: The University of Wisconsin Press.Google Scholar
Holland, P. W., Thayer, D. T. (1988). Differential item functioning and the Mantel-Haenszel procedure. In Wainer, H., Braun, H. I. (Eds.), Test validity, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Hulin, C. L., Drasgow, F., Parsons, C. K. (1983). Item response theory. Application to psychological measurement, Homewood, IL: Dow Jones-Irwin.Google Scholar
Irtel, H. (1987). On specific objectivity as a concept in measurement. In Roskam, E. E., Suck, R. (Eds.), Progress in mathematical psychology (pp. 3545). Amsterdam: North-Holland.Google Scholar
Irtel, H. (1994). The uniqueness structure of simple latent trait models. In Fischer, G. H., Laming, D. (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 265275). New York: Springer-Verlag.CrossRefGoogle Scholar
Johnson, N. L., Kotz, S. (1969). Distributions in statistics: Discrete distributions, Vol. I, Boston: Houghton Mifflin.Google Scholar
Kempf, W. (1977). Dynamic models for the measurement of ‘traits’ in social behavior. In Kempf, W., Repp, B. H. (Eds.), Mathematical models for social psychology (pp. 1458). Berne: Huber.Google Scholar
Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A. (1971). Foundations of measurement, Vol. 1, New York/London: Academic Press.Google Scholar
Kubinger, K. D. (1988). Moderne Testtheorie [Modern test theory], Weinheim: Beltz.Google Scholar
Lord, F. M. (1963). Elementary models for measuring change. In Harris, C. W. (Eds.), Problems in measuring change (pp. 2138). Madison: The University of Wisconsin Press.Google Scholar
Lord, F. M. (1980). Applications of items response theory to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Luce, R. D. (1990). Goals, achievements, and limitations of modern fundamental measurement theory. In Bock, H. H. (Eds.), Classification and related methods of data analysis (pp. 1522). Amsterdam: North-Holland.Google Scholar
McLane, S., Birkoff, G. (1988). Algebra 3rd ed.,, New York: Chelsea.Google Scholar
Narens, L. (1981). On the scales of measurement. Journal of Mathematical Psychology, 24, 249275.CrossRefGoogle Scholar
Pfanzagl, J. (1971). Theory of measurement, Würzburg and Vienna: Physica-Verlag.CrossRefGoogle Scholar
Pfanzagl, J. (1994). On item parameter estimation in certain latent trait models. In Fischer, G. H., Laming, D. (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 249263). New York: Springer-Verlag.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Pædagogiske Institut.Google Scholar
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV. Berkeley Symposium on mathematical statistics and probability, Vol. IV (pp. 321333). Berkeley: University of California Press.Google Scholar
Rasch, G. (1967). An informal report on a theory of objectivity in comparisons. In van der Kamp, L. J. Th., Vlek, C. A. J. (Eds.), Measurement theory (pp. 119). Leyden: University of Leyden.Google Scholar
Rasch, G. (1968, September). A mathematical theory of objectivity and its consequences for model construction. Paper presented at the European Meeting on Statistics, Econometrics, and Management Science, Amsterdam, The Netherlands.Google Scholar
Rasch, G. (1972). Objectivitet i samfundsvidenskaberne et metodeproblem [Ojectivity in the social sciences as a methodological problem]. National-økonomisk Tidsskrift, 110, 161196.Google Scholar
Rasch, G. (1977). On specific objectivity. An attempt at formalizing the request for generaliy and validity of scientific statements. In Blegvad, M. (Eds.), The Danish yearbook of philosophy (pp. 5894). Copenhagen: Munksgaard.Google Scholar
Santner, T. J., Duffy, D. E. (1989). The statistical analysis of discrete data, New York: Springer-Verlag.CrossRefGoogle Scholar
Scheiblechner, H. (1995). Isotonic psychometric models (ISOP). Psychometrika, 60, 281304.CrossRefGoogle Scholar
Stene, J. (1968). Einführung in Raschs Theorie psychologischer Messung [Introduction to Rasch's theory of psychological measurement]. In Fischer, G. H. (Eds.), Psychologische Testtheorie (pp. 229268). Berne: Huber.Google Scholar
Steyer, R., Eid, M. (1993). Messen und Testen [Measurement and testing], Berlin: Springer-Verlag.CrossRefGoogle Scholar
Tutz, G. (1989). Latent Trait-Modelle für ordinale Beobachtungen [Latent trait models for ordinal data], Berlin: Springer-Verlag.CrossRefGoogle Scholar
Verhelst, N. D., Glas, C. A. W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395415.CrossRefGoogle Scholar
Verhelst, N. D., Glas, C. A. W. (1995). Dynamic generalizations of the Rasch model. In Fischer, G. H., Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 181201). New York: Springer-Verlag.Google Scholar
Wainer, H., Mislevy, R. (1990). Item response theory, item calibration and proficiency estimation. In Wainer, H. (Eds.), Computerized adaptive testing: A primer, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Webster, H., Bereiter, C. (1963). The reliability of changes measured by mental test scores. In Harris, C. W. (Eds.), Problems in measuring change (pp. 3959). Madison: The University of Wisconsin Press.Google Scholar
Wright, B. D., Stone, M. H. (1972). Best test design, Chicago: Mesa Press.Google Scholar