Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T04:28:07.614Z Has data issue: false hasContentIssue false

Structural Modeling and Psychometrika: An Historical Perspective on Growth and Achievements

Published online by Cambridge University Press:  01 January 2025

P. M. Bentler*
Affiliation:
University of California, Los Angeles
*
Requests for reprints should be sent to P. M. Benfler, Department of Psychology, Franz Hall, University of California, 405 Hilgard Avenue, Los Angeles, CA 90024.

Abstract

The field of linear structural equation modeling with continuous variables is reviewed. Trends in psychometric theory and data analysis across the five decades of publication of Psychometrika are discussed, especially the clarification of concepts of population and sample, explication of the parametric structure of models, delineation of concepts of exploratory and confirmatory data analysis, expansion of statistical theory in psychometrics, estimation via optimization of an explicit objective function, and implementation of general function minimization methods. Developments in the ideas of factor analysis, latent variables, as well as structural and causal modeling are noted. Some major conceptual achievements involving general covariance structure representations, multiple population models, and moment structures are reviewed. The major statistical achievements of normal theory generalized least squares estimation, elliptical and distribution-free estimation, and higher-moment estimation are discussed. Computer programs that implement some of the theoretical developments are described.

Type
50th Anniversary Section
Copyright
Copyright © 1986 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This review was supported in part by USPHS grants DA00017 and DA01070.

References

Aigner, D. J., Goldberger, A. S. (1977). Latent variables in socioeconomic models, Amsterdam: North-Holland.Google Scholar
Aigner, D. J., Hsiao, C., Kapteyn, A., Wansbeek, T. (1984). Latent variable models in econometrics. In Griliches, Z., Intriligator, M. D. (Eds.), Handbook of econometrics, Vol. 2 (pp. 13211393). Amsterdam: North-Holland.CrossRefGoogle Scholar
Amemiya, Y., Fuller, W. A. (1984). Estimation for the multivariate errors-in-variables model with estimated error covariance matrix. The Annals of Statistics, 12, 497509.CrossRefGoogle Scholar
Anderson, J. C., Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analyses. Psychometrika, 49, 155173.CrossRefGoogle Scholar
Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure. The Annals of Statistics, 1, 135141.CrossRefGoogle Scholar
Anderson, T. W. (1984). Estimating linear statistical relationships. The Annals of Statistics, 12, 145.CrossRefGoogle Scholar
Anderson, T. W., Rubin, H. (1956). Statistical inference in factor analysis. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (pp. 111150). Berkeley: University of California Press.Google Scholar
Bartholomew, D. J. (1984). The foundations of factor analysis. Biometrika, 71, 221232.CrossRefGoogle Scholar
Bearden, W. O., Sharma, S., Teel, J. E. (1982). Sample size effects on chi-square and other statistics used in evaluating causal models. Journal of Marketing Research, 19, 425430.CrossRefGoogle Scholar
Bechtold, H. P. (1961). An empirical study of the factor analysis stability hypothesis. Psychometrika, 26, 405432.CrossRefGoogle Scholar
Bentler, P. M. (1968). Alpha-maximized factor analysis (Alphamax): Its relation to alpha and canonical factor analysis. Psychometrika, 33, 335345.CrossRefGoogle ScholarPubMed
Bentler, P. M. (1976). Multistructure statistical model applied to factor analysis. Multivariate Behavioral Research, 11, 325.CrossRefGoogle ScholarPubMed
Bentler, P. M. (1982). Linear systems with multiple levels and types of latent variables. In Jöreskog, K. G., Wold, H. (Eds.), Systems under indirect observation: Causality, structure, prediction, Pt. I (pp. 101130). Amsterdam: North-Holland.Google Scholar
Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures. Psychometrika, 48, 493517.CrossRefGoogle Scholar
Bentler, P. M. (1985). Theory and implementation of EQS, a structural equations program, Los Angeles: BMDP Statistical Software.Google Scholar
Bentler, P. M., & Berkane, M. (in press). The greatest lower bound to the elliptical kurtosis parameter. Biometrika.Google Scholar
Bentler, P. M., Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In Krishnaiah, P. R. (Eds.), Multivariate analysis VI (pp. 942). Amsterdam: North-Holland.Google Scholar
Bentler, P. M., Lee, S.-Y. (1979). A statistical development of three-mode factor analysis. British Journal of Mathematical and Statistical Psychology, 32, 87104.CrossRefGoogle Scholar
Bentler, P. M., Lee, S.-Y. (1983). Covariance structures under polynomial constraints: Applications to correlation and alpha-type structural models. Journal of Educational Statistics, 8, 207222.CrossRefGoogle Scholar
Bentler, P. M., Weeks, D. G. (1978). Restricted multidimensional scaling models. Journal of Mathematical Psychology, 17, 138151.CrossRefGoogle Scholar
Bentler, P. M., Weeks, D. G. (1979). Interrelations among models for the analysis of moment structures. Multivariate Behavioral Research, 14, 169185.CrossRefGoogle ScholarPubMed
Bentler, P. M., Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45, 289308.CrossRefGoogle Scholar
Bentler, P. M., Weeks, D. G. (1982). Multivariate analysis with latent variables. In Krishnaiah, P. R., Kanal, L. (Eds.), Handbook of statistics (pp. 747771). Amsterdam: North-Holland.Google Scholar
Bentler, P. M., Weeks, D. G. (1985). Some comments on structural equation models. British Journal of Mathematical and Statistical Psychology, 38, 120121.CrossRefGoogle Scholar
Berkane, M., & Bentler, P. M. (1985). Tests for homogeneity of kurtoses. In preparation.Google Scholar
Berkson, J. (1980). Minimum chi-square, not maximum likelihood!. The Annals of Statistics, 8, 457487.CrossRefGoogle Scholar
Blalock, H. M. (1964). Causal inferences in nonexperimental research, Chapel Hill: University of North Carolina.Google Scholar
Blalock, H. M. (1971). Causal models in the social sciences, Chicago: Aldine-Atherton.Google Scholar
Bloxom, B. (1968). A note on invariance in three-mode factor analysis. Psychometrika, 33, 347350.CrossRefGoogle ScholarPubMed
Bloxom, B. (1978). Constrained multidimensional scaling in N spaces. Psychometrika, 43, 397408.CrossRefGoogle Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of anEM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R. D., Bargmann, R. E. (1966). Analysis of covariance structures. Psychometrika, 31, 507534.CrossRefGoogle ScholarPubMed
Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation. Psychometrika, 50, 229242.CrossRefGoogle Scholar
Browne, M. W. (1968). A comparison of factor analytic techniques. Psychometrika, 33, 267334.CrossRefGoogle ScholarPubMed
Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 124.Google Scholar
Browne, M. W. (1982). Covariance structures. In Hawkins, D. M. (Eds.), Topics in applied multivariate analysis (pp. 72141). London: Cambridge University Press.CrossRefGoogle Scholar
Browne, M. W. (1984). The decomposition of multitrait-multimethod matrices. British Journal of Mathematical and Statistical Psychology, 37, 121.CrossRefGoogle ScholarPubMed
Browne, M. W. (1984). Asymptotically distribution free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Burguete, J. F., Gallant, A. R., Souza, G. (1982). On the unification of the asymptotic theory of nonlinear econometric models. Econometric Reviews, 1, 151190.CrossRefGoogle Scholar
Cambanis, S., Huang, S., Simons, G. (1981). On the theory of elliptically contoured distributions. Journal of Multivariate Analysis, 11, 368385.CrossRefGoogle Scholar
Chan, N. N., Mak, T. K. (1983). Estimation of multivariate linear relationships. Biometrika, 70, 263267.CrossRefGoogle Scholar
Corballis, M. C., Traub, R. E. (1970). Longitudinal factor analysis. Psychometrika, 35, 7998.CrossRefGoogle Scholar
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297334.CrossRefGoogle Scholar
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671684.CrossRefGoogle Scholar
Derflinger, G. (1984). A loss function for alpha factor analysis. Psychometrika, 49, 325330.CrossRefGoogle Scholar
Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22, 6790.CrossRefGoogle Scholar
Duncan, O. D. (1966). Path analysis: Sociological examples. American Journal of Sociology, 72, 116.CrossRefGoogle Scholar
Dunlap, J. W. (1961). Psychometrics—a special case of the Brahman theory. Psychometrika, 26, 6571.CrossRefGoogle Scholar
Dunlap, J. W., Cureton, E. E. (1930). On the analysis of causation. Journal of Educational Psychology, 21, 657680.CrossRefGoogle Scholar
Durbin, J. (1954). Errors in variables. Review of the International Statistics Institute, 1, 2332.CrossRefGoogle Scholar
Engelhart, M. D. (1936). The technique of path coefficients. Psychometrika, 1, 287293.CrossRefGoogle Scholar
Etezadi-Amoli, J., McDonald, R. P. (1983). A second generation nonlinear factor analysis. Psychometrika, 48, 315342.CrossRefGoogle Scholar
Finkbeiner, C. T., Tucker, L. R. (1982). Approximate uniqueness estimates for singular correlation matrices. Psychometrika, 47, 517521.CrossRefGoogle Scholar
Frisch, R. (1934). Statistical confluence analysis by means of complete regression systems, Oslo: Oslo University.Google Scholar
Gleser, L. J. (1981). Estimation in a multivariate “errors in variables” regression model: Large sample results. The Annals of Statistics, 9, 2444.CrossRefGoogle Scholar
Goldberger, A. S. (1971). Econometrics and psychometrics: A survey of communalities. Psychometrika, 36, 83107.CrossRefGoogle Scholar
Goldberger, A. S., Duncan, O. D. (1973). Structural equation models in the social sciences, New York: Seminar.Google Scholar
Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika, 33, 73115.CrossRefGoogle ScholarPubMed
Gourieroux, C., Monfort, A., Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica, 52, 681700.CrossRefGoogle Scholar
Griliches, Z. (1977). Errors in variables and other unobservables. In Aigner, D. J., Goldberger, A. S. (Eds.), Latent variables in socioeconomic models (pp. 133). Amsterdam: North-Holland.Google Scholar
Gulliksen, H. (1950). Theory of mental tests, New York: Wiley.CrossRefGoogle Scholar
Guttman, L. (1952). Multiple group methods for common factor analysis: Their basis, computation, and interpretation. Psychometrika, 17, 209222.CrossRefGoogle Scholar
Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika, 18, 277296.CrossRefGoogle Scholar
Guttman, L. (1954). A new approach to factor analysis: The radex. In Lazarsfeld, P. F. (Eds.), Mathematical thinking in the social sciences (pp. 258348). Glencoe, IL: The Free Press.Google Scholar
Harlow, L. L. (1985). Behavior of some elliptical theory estimators with nonnormal data in a covariance structures framework: A Monte Carlo study, Los Angeles: University of California.Google Scholar
Harman, H. H. (1969). Retrospective anticipation. Psychometrika, 34, 407420.CrossRefGoogle Scholar
Harris, C. W. (1978). Note on the squared multiple correlation as a lower-bound to communality. Psychometrika, 43, 283284.CrossRefGoogle Scholar
Hausman, J. A. (1977). Errors in variables in simultaneous equation models. Journal of Econometrics, 5, 389401.CrossRefGoogle Scholar
Hurwicz, L., & Anderson, T. W. (1946). Statistical models with disturbances in equations and/or disturbances in variables. Unpublished Cowles Commission memoranda.Google Scholar
Jackson, D. J., Tweed, D. L. (1980). Note on the squared multiple correlation as a lower bound to communality. Psychometrika, 45, 281284.CrossRefGoogle Scholar
Jennrich, R. I., Clarkson, D. B. (1980). A feasible method for standard errors of estimate in maximum likelihood factor analysis. Psychometrika, 45, 237247.CrossRefGoogle Scholar
Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 34, 443482.CrossRefGoogle Scholar
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183202.CrossRefGoogle Scholar
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239251.CrossRefGoogle Scholar
Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409426.CrossRefGoogle Scholar
Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In Krishnaiah, P. R. (Eds.), Application of statistics (pp. 265287). Amsterdam: North-Holland.Google Scholar
Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43, 443477.CrossRefGoogle Scholar
Jöreskog, K. G., Goldberger, A. S. (1972). Factor analysis by generalized least squares. Psychometrika, 37, 243260.CrossRefGoogle Scholar
Jöreskog, K. G., Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631639.Google Scholar
Jöreskog, K. G., Sörbom, D. (1983). LISREL user's guide, Chicago: International Educational Services.Google Scholar
Jöreskog, K. G., Van Thillo, M. (1973). LISREL—A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables, Uppsala: Uppsala University, Department of Statistics.Google Scholar
Kagan, A. M., Linnik, Y. V., Rao, C. R. (1973). Characterization problems in mathematical statistics, New York: Wiley.Google Scholar
Kaiser, H. F., Caffrey, J. (1965). Alpha factor analysis. Psychometrika, 30, 114.CrossRefGoogle ScholarPubMed
Kenny, D. A., Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210.CrossRefGoogle Scholar
Klepper, S., Leamer, E. E. (1984). Consistent sets of regressions with errors in all variables. Econometrica, 52, 163183.CrossRefGoogle Scholar
Krane, W. R., McDonald, R. P. (1978). Scale invariance and the factor analysis of correlation matrices. British Journal of Mathematical and Statistical Psychology, 31, 218228.CrossRefGoogle Scholar
Krishnaiah, P. R., Lee, J. C. (1974). On covariance structures. Sankhya, 38, 357371.Google Scholar
Lawley, D. N. (1940). The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, A60, 6482.CrossRefGoogle Scholar
Lawley, D. N. (1958). Estimation in factor analysis under various initial assumptions. British Journal of Statistical Psychology, 11, 112.CrossRefGoogle Scholar
Lawley, D. N. (1967). Some new results in maximum likelihood factor analysis. Proceedings of the Royal Society of Edinburgh, A67, 256264.Google Scholar
Lee, S.-Y. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 153160.CrossRefGoogle Scholar
Lee, S.-Y. (1985). Analysis of covariance and correlation structures. Computational Statistics & Data Analysis, 2, 279295.CrossRefGoogle Scholar
Lee, S.-Y. (1985). On testing functional constraints in structural equation models. Biometrika, 72, 125131.CrossRefGoogle Scholar
Lee, S.-Y., Bentler, P. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models. South African Statistical Journal, 14, 121136.Google Scholar
Lee, S.-Y., Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis. Psychometrika, 44, 99113.CrossRefGoogle Scholar
Lee, S.-Y., Tsui, K. L. (1982). Covariance structure analysis in several populations. Psychometrika, 47, 297308.CrossRefGoogle Scholar
Levin, J. (1966). Simultaneous factor analysis of several Gramian matrices. Psychometrika, 31, 413419.CrossRefGoogle ScholarPubMed
Lockhart, R. S. (1967). Asymptotic sampling variances for factor analytic models identified by specified zero parameters. Psychometrika, 32, 265277.CrossRefGoogle ScholarPubMed
Luenberger, D. G. (1984). Linear and nonlinear programming 2nd ed.,, Reading, MA: Addison-Wesley.Google Scholar
Madansky, A. (1959). The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association, 54, 173205.CrossRefGoogle Scholar
McArdle, J. J., McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234251.CrossRefGoogle ScholarPubMed
McDonald, R. P. (1962). A general approach to nonlinear factor analysis. Psychometrika, 27, 397415.CrossRefGoogle Scholar
McDonald, R. P. (1970). The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis. British Journal of Mathematical and Statistical Psychology, 23, 121.CrossRefGoogle Scholar
McDonald, R. P. (1970). Three common factor models for groups of variables. Psychometrika, 35, 111128.CrossRefGoogle Scholar
McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 31, 5972.CrossRefGoogle Scholar
McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures: Some remarks on applications. British Journal of Mathematical and Statistical Psychology, 33, 161183.CrossRefGoogle Scholar
McGaw, B., Jöreskog, K. G. (1971). Factorial invariance of ability measures in groups differing in intelligence and socioeconomic status. British Journal of Mathematical and Statistical Psychology, 24, 154168.CrossRefGoogle Scholar
Meredith, W. (1964). Canonical correlations with fallible data. Psychometrika, 29, 5565.CrossRefGoogle Scholar
Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177185.CrossRefGoogle Scholar
Meredith, W. (1965). A method for studying differences between groups. Psychometrika, 30, 1529.CrossRefGoogle ScholarPubMed
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359381.CrossRefGoogle Scholar
Mooijaart, A. (1983). Two kinds of factor analysis for ordered categorical variables. Multivariate Behavioral Research, 18, 423441.CrossRefGoogle ScholarPubMed
Mooijaart, A. (1985). Factor analysis for non-normal variables. Psychometrika, 50, 323342.CrossRefGoogle Scholar
Mooijaart, A. (1985). A note on computational efficiency in asymptotically distribution-free correlational methods. British Journal of Mathematical and Statistical Psychology, 38, 112115.CrossRefGoogle Scholar
Mooijaart, A., & Bentler, P. M. (in press-a). The weight matrix in asymptotic distribution-free methods. British Journal of Mathematical and Statistical Psychology.Google Scholar
Mooijaart, A., & Bentler, P. M. (in press-b). Random polynomial factor analysis. Proceedings of Fourth International Symposium: Data Analysis and Informatics.Google Scholar
Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known. Psychometrika, 4, 149162.CrossRefGoogle Scholar
Muirhead, R. J. (1982). Aspects of multivariate statistical theory, New York: Wiley.CrossRefGoogle Scholar
Muirhead, R. J., Waternaux, C. (1980). Asymptotic distributions in canonical correlation analysis and other multivariate procedures for nonnormal populations. Biometrika, 67, 3143.CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Please, N. W. (1973). Comparison of factor loadings in different populations. British Journal of Mathematical and Statistical Psychology, 26, 6189.CrossRefGoogle Scholar
Pratt, J. W., Schlaifer, R. (1984). On the nature and discovery of structure (with comments). Journal of the American Statistical Association, 79, 921.CrossRefGoogle Scholar
Ramsey, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 337360.CrossRefGoogle Scholar
Ramsey, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241246.CrossRefGoogle Scholar
Rasch, G. (1953). On simultaneous factor analysis in several populations. Uppsala symposium on psychological factor analysis, Uppsala: Almqvist & Wiksell.Google Scholar
Rindskopf, D. (1984). Structural equation models: Empirical identification, Heywood cases, and related problems. Sociological Methods and Research, 13, 109119.CrossRefGoogle Scholar
Robinson, P. M. (1977). The estimation of a multivariate linear relation. Journal of Multivariate Analysis, 7, 409423.CrossRefGoogle Scholar
Roff, M. (1936). Some properties of the communality in multiple factor theory. Psychometrika, 1(2), 16.CrossRefGoogle Scholar
Rothenberg, T. J. (1984). Approximating the distributions of econometric estimators and test statistics. In Griliches, A., Intriligator, M. D. (Eds.), Handbook of econometrics, Vol. 2 (pp. 881935). Amsterdam: North-Holland.CrossRefGoogle Scholar
Satorra, A., Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 8390.CrossRefGoogle Scholar
Schmid, J., Leiman, J. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 5361.CrossRefGoogle Scholar
Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures. South African Statistical Journal, 17, 3381.Google Scholar
Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika, 72, 133144.CrossRefGoogle Scholar
Simon, H. A. (1954). Spurious correlation: A causal interpretation. Journal of the American Statistical Association, 49, 467479.Google Scholar
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural models. In Leinhardt, S. (Eds.), Sociological methodology 1982 (pp. 290313). San Francisco: Jossey-Bass.Google Scholar
Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. British Journal of Mathematical and Statistical Psychology, 27, 229239.CrossRefGoogle Scholar
Sörbom, D. (1978). An alternative to the methodology for analysis of covariance. Psychometrika, 43, 381396.CrossRefGoogle Scholar
Sörbom, D. (1982). Structural equation models with structured means. In Jöreskog, K. G., Wold, H. (Eds.), Systems under indirect observation (pp. 183195). Amsterdam: North-Holland.Google Scholar
Spearman, C. (1904). “General intelligence” objectively determined and measured. American Journal of Psychology, 15, 201292.CrossRefGoogle Scholar
Srivastava, J. N. (1966). On testing hypotheses regarding a class of covariance structures. Psychometrika, 31, 147164.CrossRefGoogle ScholarPubMed
Steiger, J. H., Browne, M. W. (1984). The comparison of interdependent correlations between optimal linear composites. Psychometrika, 49, 1124.CrossRefGoogle Scholar
Steiger, J. H., Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. British Journal of Mathematical and Statistical Psychology, 35, 208215.CrossRefGoogle Scholar
Stroud, T. W. F. (1974). Comparing regressions when measurement error variances are known. Psychometrika, 39, 5368.CrossRefGoogle Scholar
Swain, A. J. (1975). A class of factor analytic estimation procedures with common asymptotic sampling properties. Psychometrika, 40, 315335.CrossRefGoogle Scholar
Tanaka, J. S. (1984). Some results on the estimation of covariance structure models, Los Angeles: University of California.Google Scholar
Tanaka, J. S., Bentler, P. M. (1983). Factor invariance of premorbid social competence across multiple populations of schizophrenics. Multivariate Behavioral Research, 18, 135146.CrossRefGoogle ScholarPubMed
Tanaka, J. S., & Bentler, P. M. (1985). Quasi-likelihood estimation in asymptotically efficient covariance structure models. 1984 Proceedings of the American Statistical Association, Social Statistics Section (pp. 658662).Google Scholar
Thurstone, L. L. (1944). A multiple group method of factoring the correlation matrix. Psychometrika, 10, 7380.CrossRefGoogle Scholar
Thurstone, L. L. (1947). Multiple factor analysis, Chicago: Chicago University Press.Google Scholar
Tucker, L. R. (1955). The objective definition of simple structure in linear factor analysis. Psychometrika, 20, 209225.CrossRefGoogle Scholar
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311.CrossRefGoogle ScholarPubMed
Tukey, J. W. (1954). Causation, regression and path analysis. In Kempthorne, O., Bancroft, T. A., Gowen, J. W., Lush, J. L. (Eds.), Statistics and mathematics in biology (pp. 3566). Ames, IA: Iowa State College Press.Google Scholar
Tukey, J. W. (1977). Exploratory data analysis, Reading, MA: Addison-Wesley.Google Scholar
Tyler, D. E. (1982). Radial estimates and the test for sphericity. Biometrika, 69, 429436.CrossRefGoogle Scholar
Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika, 70, 411420.CrossRefGoogle Scholar
Van Praag, B. M. S., Dijkstra, T. K., Van Velzen, J. (1985). Least squares theory based on general distributional assumptions with an application to the incomplete observations problem. Psychometrika, 50, 2536.CrossRefGoogle Scholar
Votaw, D. F. (1948). Testing compound symmetry in a normal multivariate population. Annals of Mathematical Statistics, 19, 189196.CrossRefGoogle Scholar
Werts, C. E., Linn, R. L. (1970). Path analysis: Psychological examples. Psychological Bulletin, 74, 193212.CrossRefGoogle Scholar
Werts, C. E., Rock, D. A., Linn, R. L., Jöreskog, K. G. (1976). Comparison of correlations, variances, covariances, and regression weights with or without measurement error. Psychological Bulletin, 83, 10071013.CrossRefGoogle Scholar
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 125.CrossRefGoogle Scholar
Wiley, D. E. (1973). The identification problem for structural equation models with unmeasured variables. In Goldberger, A. S., Duncan, O. D. (Eds.), Structural equation models in the social sciences (pp. 6983). New York: Seminar.Google Scholar
Wiley, D. E., Schmidt, W. H., Bramble, W. J. (1973). Studies of a class of covariance structure models. Journal of the American Statistical Association, 68, 317323.CrossRefGoogle Scholar
Wilks, S. S. (1946). Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. Annals of Mathematical Statistics, 17, 257281.CrossRefGoogle Scholar
Wold, H. (1979). Model construction and evaluation when theoretical knowledge is scarce: Theory and application of partial least squares. In Kmenta, J., Ramsey, J. B. (Eds.), Evaluation of econometric models (pp. 4774). New York: Academic.Google Scholar
Woodward, J. A., Bentler, P. M. (1978). A statistical lower-bound to population reliability. Psychological Bulletin, 85, 13231326.CrossRefGoogle ScholarPubMed
Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161215.CrossRefGoogle Scholar
Wright, S. (1960). Path coefficients and path regressions: Alternative or complementary concepts?. Biometrics, 16, 189202.CrossRefGoogle Scholar