Published online by Cambridge University Press: 01 January 2025
A key feature of the analysis of three-way arrays by Candecomp/Parafac is the essential uniqueness of the trilinear decomposition. We examine the uniqueness of the Candecomp/Parafac and Indscal decompositions. In the latter, the array to be decomposed has symmetric slices. We consider the case where two component matrices are randomly sampled from a continuous distribution, and the third component matrix has full column rank. In this context, we obtain almost sure sufficient uniqueness conditions for the Candecomp/Parafac and Indscal models separately, involving only the order of the three-way array and the number of components in the decomposition. Both uniqueness conditions are closer to necessity than the classical uniqueness condition by Kruskal.
Part of this research was supported by (1) the Flemish Government: (a) Research Council K.U. Leuven: GOA-MEFISTO-666, GOA-Ambiorics, (b) F.W.O. project G.0240.99, (c) F.W.O. Research Communities ICCoS and ANMMM, (d) Tournesol project T2004.13; and (2) the Belgian Federal Science Policy Office: IUAP P5/22. Lieven De Lathauwer holds a permanent research position with the French Centre National de la Recherche Scientifique (C.N.R.S.). He also holds an honorary research position with the K.U. Leuven, Leuven, Belgium.