Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T19:03:35.911Z Has data issue: false hasContentIssue false

Testing for DIF in a Model with Single Peaked Item Characteristic Curves: The Parella Model

Published online by Cambridge University Press:  01 January 2025

Herbert Hoijtink*
Affiliation:
Department of Statistics and Measurement Theory, University of Groningen, The Netherlands
Ivo W. Molenaar
Affiliation:
Department of Statistics and Measurement Theory, University of Groningen, The Netherlands
*
Requests for reprints should be sent to Herbert Hoijtink, Department of Statistics and Measurement Theory, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, THE NETHERLANDS.

Abstract

The PARELLA model is a probabilistic parallelogram model that can be used for the measurement of latent attitudes or latent preferences. The data analyzed are the dichotomous responses of persons to items, with a one (zero) indicating agreement (disagreement) with the content of the item. The model provides a unidimensional representation of persons and items. The response probabilities are a function of the distance between person and item: the smaller the distance, the larger the probability that a person will agree with the content of the item. This paper discusses how the approach to differential item functioning presented by Thissen, Steinberg, and Wainer can be implemented for the PARELLA model.

Type
Original Paper
Copyright
Copyright © 1992 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Requests for the PARELLA software should be sent to Iec Progamma PO Box 841, 9700 AV Groningen, The Netherlands.

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM-algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R. D., Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179197.CrossRefGoogle Scholar
Coombs, C. H. (1964). A theory of data, MI: Mathesis Press.Google Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
Doosje, B. J., Siero, F. W. (1991). Invloed van discrepantie tussen boodschap en eigen standpunt, kwaliteit van argumenten en motivatie tot elaboratie op de attitude ten aanzien vande auto-milieu-problematiek [Influence of discrepancy between message and attitude, influence of message quality on the attitude concerning the car-environment-issue]. In Meertens, R. W., Buunk, A. P., van der Vlist, R. (Eds.), Sociale Psychologie (pp. 115). 's-Gravenhage: VUGA Uitgeverij B. V..Google Scholar
Fischer, G. H. (1974). Einfuhrung in die theorie psychologischer tests: grundlagen und anwendungen [Introduction to the theory of psychological tests: foundations and applications], Bern: Huber.Google Scholar
Fischer, G. H. (1987). Applying the principles of specific objectivity and of generalizability to the measurement of change. Psychometrika, 52, 565587.CrossRefGoogle Scholar
Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psychometrika, 55, 641656.CrossRefGoogle Scholar
Hoijtink, H. (1991). Measurement of latent traits by proximity items. Applied Psychological Measurement, 15, 153170.CrossRefGoogle Scholar
Hoijtink, H. (1991). PARELLA, measurement of latent traits by proximity items, Leiden: DSWO-Press.Google Scholar
Hoijtink, H., Molenaar, I. W., Post, W. J. (1992). PARELLA user's manual, Groningen, The Netherlands: iecProGAMMA.Google Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Mood, A. M., Graybill, F. A., Boes, D. C. (1985). Introduction to the theory of statistics, New York: McGraw-Hill.Google Scholar
Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 337360.CrossRefGoogle Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282.CrossRefGoogle Scholar
Sachs, L. (1974). Angewandte Statistik [Applied statistics], Berlin: Springer-Verlag.CrossRefGoogle Scholar
Thissen, D., Steinberg, L., Wainer, H. (1988). Use of item response theory in the study of group differences in trace lines. In Wainer, H., Braun, H. I. (Eds.), Test validity (pp. 147168). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar