Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T07:45:43.876Z Has data issue: true hasContentIssue false

A Thurstonian Pairwise Choice Model with Univariate and Multivariate Spline Transformations

Published online by Cambridge University Press:  01 January 2025

Geert De Soete*
Affiliation:
University of Ghent, Belgium
Suzanne Winsberg
Affiliation:
IRCAM, Paris, France
*
Requests for reprints should be sent to Geert De Soete, Department of Data Analysis, University of Ghent, Henri Dunantlaan 2, B-9000 Ghent, BELGIUM.

Abstract

A probabilistic choice model is developed for paired comparisons data about psychophysical stimuli. The model is based on Thurstone's Law of Comparative Judgment Case V and assumes that each stimulus is measured on a small number of physical variables. The utility of a stimulus is related to its values on the physical variables either by means of an additive univariate spline model or by means of multivariate spline model. In the additive univariate spline model, a separate univariate spline transformation is estimated for each physical dimension and the utility of a stimulus is assumed to be an additive combination of these transformed values. In the multivariate spline model, the utility of a stimulus is assumed to be a general multivariate spline function in the physical variables. The use of B splines for estimating the transformation functions is discussed and it is shown how B splines can be generalized to the multivariate case by using as basis functions tensor products of the univariate basis functions. A maximum likelihood estimation procedure for the Thurstone Case V model with spline transformation is described and applied for illustrative purposes to various artificial and real data sets. Finally, the model is extended using a latent class approach to the case where there are unreplicated paired comparisons data from a relatively large number of subjects drawn from a heterogeneous population. An EM algorithm for estimating the parameters in this extended model is outlined and illustrated on some real data.

Type
Original Paper
Copyright
Copyright © 1993 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author is supported as “Bevoegdverklaard Navorser” of the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek”. The authors are indebted to Ulf Böckenholt and Yoshio Takane for useful comments on an earlier draft of this paper.

References

Aitkin, M., Anderson, D., Hinde, J. (1981). Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144, 419461.CrossRefGoogle Scholar
Akaike, H. (1977). On entropy maximization. In Krishnaiah, P. R. (Eds.), Applications of statistics (pp. 2741). Amsterdam: North-Holland.Google Scholar
Bacchetti, P. (1989). Additive isotonic models. Journal of the American Statistical Association, 84, 289294.Google Scholar
Bloxom, B. (1972). The simplex in pair comparisons. Psychometrika, 37, 119136.CrossRefGoogle Scholar
Bloxom, B. (1985). A constrained spline estimator of a hazard function. Psychometrika, 50, 301321.CrossRefGoogle Scholar
Bock, R. D., Jones, L. V. (1968). The measurement and prediction of judgment and choice, San Francisco: Holden-Day.Google Scholar
Böckenholt, U., Böckenholt, I. (1990). Modeling individual differences in unfolding preference data: A restricted latent class approach. Applied Psychological Measurement, 14, 257269.CrossRefGoogle Scholar
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370.CrossRefGoogle Scholar
Breiman, L. (1991). The II method for estimating multivariate functions from noisy data. Technometrics, 33, 125160.Google Scholar
Breiman, L., Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80, 580619.CrossRefGoogle Scholar
Curry, H. B., Schoenberg, I. J. (1947). On spline distribution functions and their limits: The Pólya frequency distribution functions. Bulletin of the American Mathematical Society, 53 (Abstract 380), 11141114.Google Scholar
David, H. A. (1988). The method of paired comparisons 2nd ed.,, London: Griffin.Google Scholar
de Boor, C. (1978). A practical guide to splines, New York: Springer-Verlag.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
De Soete, G. (1990). A latent class approach to modeling pairwise preferential choice data. In Schader, M., Gaul, W. (Eds.), Knowledge, data and computer-assisted decisions (pp. 103113). Berlin: Springer-Verlag.CrossRefGoogle Scholar
De Soete, G., Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model. Psychometrika, 48, 553566.CrossRefGoogle Scholar
De Soete, G., Carroll, J. D. (1992). Probabilistic multidimensional models of pairwise choice data. In Ashby, F. G. (Eds.), Multidimensional models of perception and cognition (pp. 6188). Hillsdale, NJ: Erlbaum.Google Scholar
De Soete, G., Carroll, J. D., DeSarbo, W. S. (1986). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical Psychology, 30, 2841.CrossRefGoogle Scholar
De Soete, G., DeSarbo, W. S. (1991). A latent class probit model for analyzing pick any/N data. Journal of Classification, 8, 4563.CrossRefGoogle Scholar
Formann, A. K. (1989). Constrained latent class models: Some further applications. British Journal of Mathematical and Statistical Psychology, 42, 3754.CrossRefGoogle Scholar
Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1141.Google Scholar
Friedman, J. H., Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817823.CrossRefGoogle Scholar
Gill, P. E., Murray, W. (1974). Safeguarded steplength algorithms for optimization using descent methods, Teddington, England: National Physical Laboratory.Google Scholar
Hastie, T., Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1, 297318.Google Scholar
Hastie, T., Tibshirani, R. (1987). Generalized additive models: Some applications. Journal of the American Statistical Association, 82, 371386.CrossRefGoogle Scholar
Hope, A. C. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, Series B, 30, 582598.CrossRefGoogle Scholar
Khuri, A. I., Cornell, J. A. (1987). Response surfaces, New York: Marcel Dekker.Google Scholar
Lazarsfeld, P. F., Henry, R. W. (1968). Latent structure analysis, New York: Houghton Mifflin.Google Scholar
McLachlan, G. J., Basford, K. E. (1988). Mixture models, New York: Marcel Dekker.Google ScholarPubMed
Nelder, J. A., Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370384.CrossRefGoogle Scholar
Ramsay, J. O. (1978). Confidence regions for multidimensional scaling analysis. Psychometrika, 43, 145160.CrossRefGoogle Scholar
Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3, 425461.Google Scholar
Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Takane, Y. (1980). Maximum likelihood estimation in the generalized case of Thurstone's model of comparative judgment. Japanese Psychological Research, 22, 188196.CrossRefGoogle Scholar
Takane, Y. (1989). Analysis of covariance structures and probabilistic binary choice data. In De Soete, G., Feger, H., Klauer, K. C. (Eds.), New developments in psychological choice modeling (pp. 139160). Amsterdam: North-Holland.CrossRefGoogle Scholar
Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273286.CrossRefGoogle Scholar
Wahba, G., Wold, S. (1987). A completely automatic French curve: Fitting spline functions by cross-validation. Communications in Statistics, Part A—Theory and Methods, 4, 17.Google Scholar
Winsberg, S. (1988). Two techniques: Monotone spline transformations for dimension reduction in PCA and easy-to-generate metrics for PCA of sampled functions. In van Rijckevorsel, J. L. A., de Leeuw, J. (Eds.), Component and correspondence analysis (pp. 115135). London: Wiley.Google Scholar
Winsberg, S., Carroll, J. D. (1988). A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model. Psychometrika, 54, 217229.CrossRefGoogle Scholar
Winsberg, S., Ramsay, J. O. (1980). Monotonic transformations to additivity using splines. Biometrika, 67, 669674.CrossRefGoogle Scholar
Winsberg, S., Ramsay, J. O. (1981). Analysis of pairwise transformations to additivity using integrated B-splines. Psychometrika, 46, 171186.CrossRefGoogle Scholar
Winsberg, S., Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction. Psychometrika, 48, 575595.CrossRefGoogle Scholar