Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T10:11:30.888Z Has data issue: false hasContentIssue false

Using Cross-Classified Structural Equation Models to Examine the Accuracy of Personality Judgments

Published online by Cambridge University Press:  01 January 2025

Steffen Nestler*
Affiliation:
University of Münster
Mitja D. Back
Affiliation:
University of Münster
*
Correspondence should be made to Steffen Nestler, University of Münster, Fliednerstr. 21, 48149 Münster, Germany. Email: steffen.nestler@wwu.de; steffen.nestler@uni-muenster.de

Abstract

Whether, when, and why perceivers are able to accurately infer the personality traits of other individuals is a key topic in psychological science. Studies examining this question typically ask a number of perceivers to judge a number of targets with regard to a specific trait. The resulting data are then analyzed by averaging the judgments across perceivers or by computing the respective statistic for each single perceiver. Here, we discuss the limitations of the average-perceiver and single-perceiver approaches. Furthermore, we argue that and illustrate how cross-classified structural equation models can be used for the flexible analysis of accuracy data.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We are grateful to Sarah Humberg for very helpful comments on an earlier version of the manuscript. This article is dedicated to Irmgard Laufer.

References

Asparouhov, T., & Muthén, B. (2007). Computationally efficient estimation of multilevel high-dimensional latent variable models. In Proceedings of the 2007 Joint Statistical Meetings, Section on Statistics in Epidemiology (pp. 2531–2535). Alexandria, VA: American Statistical Association.Google Scholar
Asparouhov, T., & Muthén, B. (2012). General Random Effect Latent Variable Modeling: Random Subjects, Items, Contexts, and Parameters. Technical Report. https://www.statmodel.com/download/NCME12.pdf.Google Scholar
Baayen, R. H., & Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 39041210.1016/j.jml.2007.12.005CrossRefGoogle Scholar
Back, M. D., Stopfer, J. M., Vazire, S., Gaddis, S., Schmukle, S. C., Egloff, B., & Gosling, S. D. (2010). Facebook profiles reflect actual personality, not self-idealization. Psychological Science, 21, 372–374.CrossRefGoogle Scholar
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. Retrieved from http://cran.r-project.org/web/packages/lme4.Google Scholar
Bauer, D. J., & Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11, 142163CrossRefGoogle ScholarPubMed
Biesanz, J. C. (2010). The social accuracy model of interpersonal perception: Assessing individual differences in perceptive and expressive accuracy. Multivariate Behavioral Research, 45, 853885CrossRefGoogle ScholarPubMed
Borkenau, P., & Liebler, A. (1992). Trait inferences: Sources of validity at zero acquaintance. Journal of Personality and Social Psychology, 62, 645657CrossRefGoogle Scholar
Borkenau, P., & Liebler, A. (1993). Convergence of stranger ratings of personality and intelligence with self-ratings, partner ratings, and measured intelligence. Journal of Personality and Social Psychology, 65, 546553CrossRefGoogle Scholar
Borkenau, P., & Mauer, N., & Riemann, R., & Spinath, F. M., & Angleitner, A. (2004). Thin slices of behavior as cues of personality and intelligence. Journal of Personality and Social Psychology, 86, 599614CrossRefGoogle ScholarPubMed
Brunswik, E. (1956). Perception and the representative design of psychological experiments, 2Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Funder, D. C. (1999). Personality judgment: A realistic approach to person perception, San Diego, CA: Academic Press.Google Scholar
Funder, D. C. (2012). Accurate personality judgments. Current Directions in Psychological Science, 21, 177182CrossRefGoogle Scholar
Funder, D. C., & Sneed, C. D. (1993). Behavioral manifestations of personality: An ecological approach to judgmental accuracy. Journal of Personality and Social Psychology, 64, 479490CrossRefGoogle ScholarPubMed
Furr, R. M. (2008). A framework for profile similarity: Integrating similarity, normativeness, and distinctiveness. Journal of Personality, 76, 12671316CrossRefGoogle ScholarPubMed
Gifford, R. (1994). A lens-mapping framework for understanding the encoding and decoding of interpersonal dispositions in nonverbal behaviors. Journal of Personality and Social Psychology, 66, 398412CrossRefGoogle Scholar
Goldstein, H. (1987). Multilevel models in educational and social research, London: Griffin.Google Scholar
González, J., & De Boeck, P., & Tuerlinckx, F. (2008). A double-structure structural equation model for three-mode data. Psychological Methods, 13, 337353CrossRefGoogle ScholarPubMed
Gosling, S. D., & Ko, S. J., & Mannarelli, T., & Morris, M. E. (2002). A room with a cue: Personality judgments based on offices and bedrooms. Journal of Personality and Social Psychology, 82, 379398CrossRefGoogle ScholarPubMed
Hall, J. A., & Bernieri, F. J., & Carney, D. R. Harrigan, J. A., & Rosenthal, R., & Scherer, K. R. (2005). Nonverbal behavior and interpersonal sensitivity. The new handbook of methods in nonverbal behavior research, Oxford: Oxford University Press 237281.CrossRefGoogle Scholar
Hall, J. A., & Bernieri, F. J. (2001). Interpersonal Sensitivity: Theory and Measurement, Taylor & Francis: Psychology Press.CrossRefGoogle Scholar
Hirschmüller, S., & Egloff, B., & Nestler, S., & Back, M. D. (2013). The dual lens model: A comprehensive framework for understanding self-other agreement of personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 104, 335353CrossRefGoogle Scholar
Hirschmüller, S., & Egloff, B., & Schmukle, S. C., & Nestler, S., & Back, M. D. (2015). Accurate judgments of neuroticism at zero acquaintance: A question of relevance. Journal of Personality, 83, 221228CrossRefGoogle ScholarPubMed
Hursch, C. J., & Hammond, K. R., & Hursch, J. L. (1964). Some methodological considerations in multiple-probability studies. Psychological Review, 71, 4260CrossRefGoogle Scholar
Judd, C. M., & Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103, 5469CrossRefGoogle ScholarPubMed
Karelaia, N., & Hogarth, R. M. (2008). Determinants of linear judgment: A meta-analysis of lens-model studies. Psychological Bulletin, 134, 404426CrossRefGoogle ScholarPubMed
Kenny, D. A., & West, T. V. Skowronski, J., & Ambady, N. (2008). Zero acquaintance: Definitions, statistical model, findings, and process. First impressions, New York: Guilford 129146.Google Scholar
Küfner, A. C. P., & Back, M. D., & Nestler, S., & Egloff, B. (2010). Tell me a story and I will tell you who you are! Lens model analyses of personality and creative writing. Journal of Research in Personality, 44, 427435CrossRefGoogle Scholar
Lee, S-Y (2007). Structural equation modeling: A Bayesian approach, Hoboken, NJ: WileyCrossRefGoogle Scholar
McCulloch, C. E., & Searle, S. R., & Neuhaus, J. M. (2004). Generalized, linear, and mixed models, 2Hoboken, NJ: Wiley.Google Scholar
McDonald, R. P. (1993). A general model for two-level data with responses missing at random. Psychometrika, 58, 575585CrossRefGoogle Scholar
McDonald, R. P. (1994). The bilevel reticular action model for path analysis with latent variables. Sociological Methods and Research, 22, 399413CrossRefGoogle Scholar
Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557585CrossRefGoogle Scholar
Muthén, B. O. (1990). Mean and covariance structure analysis of hierarchical data (UCLA Statistics Series No. 62), Los Angeles: University of California.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2014). Mplus user’s guide: Statistical analysis with latent variables (7th ed.). Los Angeles, CAGoogle Scholar
Naumann, L. P., & Vazire, S., & Rentfrow, P. J., & Gosling, S. D. (2009). Personality judgments based on physical appearance. Personality and Social Psychology Bulletin, 35, 16611671CrossRefGoogle ScholarPubMed
Nestler, S., & Back, M. D. (2013). Applications and extensions of the lens model to understand interpersonal judgments at zero acquaintance. Current Directions in Psychological Science, 22, 374379CrossRefGoogle Scholar
Nestler, S., & Egloff, B., & Küfner, A. C. P., & Back, M. D. (2012). An integrative lens model approach to bias and accuracy in human inferences: Hindsight effects and knowledge updating in personality judgments. Journal of Personality and Social Psychology, 103, 698717CrossRefGoogle Scholar
Nestler, S., & Grimm, K., & Schönbrodt, F. D. (2015). The social consequences and mechanisms of personality: How to analyze longitudinal data from individual, dyadic, round-robin, and network designs. European Journal of Personality, 29, 272295CrossRefGoogle Scholar
Ostendorf, F., & Angleitner, A. (2004). NEO-PI-R-NEO Personality inventory after Costa and McCrae: Revised version, Göttingen: Hogrefe.Google Scholar
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879891CrossRefGoogle ScholarPubMed
Preacher, K. J., & Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209233CrossRefGoogle ScholarPubMed
Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41, 203212CrossRefGoogle Scholar
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods, Thousand Oaks: Sage Publications.Google Scholar
Rentfrow, P. J., & Gosling, S. D. (2006). Message in a Ballad: The role of music preferences in interpersonal perception. Psychological Science, 17, 236242CrossRefGoogle Scholar
Rogosa, D., & Saner, H. (1995). Longitudinal data analysis examples with random coefficient models. Journal of Educational and Behavioral Statistics, 20, 149170CrossRefGoogle Scholar
Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling, 2London: Sage Publishers.Google Scholar
Stopfer, J. M., & Egloff, B., & Nestler, S., & Back, M. D. (2014). Personality expression and impression formation in online social networks: An integrative approach to understanding the processes of accuracy, impression management, and meta-accuracy. European Journal of Personality, 28, 7394CrossRefGoogle Scholar
Todorov, A., & Dotsch, R., & Wigboldus, D., & Said, C. P. (2011). Data-driven methods for modeling social perception. Social and Personality Psychology Compass, 5, 775791CrossRefGoogle Scholar
Verbeke, G., & Molenberghs, G. (2009). Linear mixed models for longitudinal data, Berlin: Springer.Google Scholar
Zebrowitz, L. A., & Collins, M. A. (1997). Accurate social perception at zero acquaintance: The affordances of a Gibsonian approach. Personality and Social Psychology Review, 1, 203222CrossRefGoogle ScholarPubMed