Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T07:46:09.482Z Has data issue: true hasContentIssue false

Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data

Published online by Cambridge University Press:  01 January 2025

Zhao-Hua Lu*
Affiliation:
St. Jude Children’s Research Hospital
Sy-Miin Chow
Affiliation:
The Pennsylvania State University
Nilam Ram
Affiliation:
The Pennsylvania State University
Pamela M. Cole
Affiliation:
The Pennsylvania State University
*
Correspondence should be made to Zhao-Hua Lu, St. Jude Children’s Research Hospital, MS 768, Room R6006, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA. Email: zhaohua.lu@stjude.org

Abstract

In the study of human dynamics, the behavior under study is often operationalized by tallying the frequencies and intensities of a collection of lower-order processes. For instance, the higher-order construct of negative affect may be indicated by the occurrence of crying, frowning, and other verbal and nonverbal expressions of distress, fear, anger, and other negative feelings. However, because of idiosyncratic differences in how negative affect is expressed, some of the lower-order processes may be characterized by sparse occurrences in some individuals. To aid the recovery of the true dynamics of a system in cases where there may be an inflation of such “zero responses,” we propose adding a regime (unobserved phase) of “non-occurrence” to a bivariate Ornstein–Uhlenbeck (OU) model to account for the high instances of non-occurrence in some individuals while simultaneously allowing for multivariate dynamic representation of the processes of interest under nonzero responses. The transition between the occurrence (i.e., active) and non-occurrence (i.e., inactive) regimes is represented using a novel latent Markovian transition model with dependencies on latent variables and person-specific covariates to account for inter-individual heterogeneity of the processes. Bayesian estimation and inference are based on Markov chain Monte Carlo algorithms implemented using the JAGS software. We demonstrate the utility of the proposed zero-inflated regime-switching OU model to a study of young children’s self-regulation at 36 and 48 months.

Type
Original Paper
Copyright
Copyright © 2019 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Zhao-Hua Lu and Sy-Miin Chow have contributed equally to this work.

Funding for this study was provided by NSF Grant SES-1357666, NIH Grants R01MH61388, R01HD07699, R01GM105004, U24EB026436, Penn State Quantitative Social Sciences Initiative and UL TR000127 from the National Center for Advancing Translational Sciences. The article is partly done when Zhao-Hua Lu was in the Pennsylvania State University.

References

Ait-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. The Annals of Statistics, 36(2), 906937.CrossRefGoogle Scholar
Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. In Tuma, N. (Eds), Sociological methodology 1986, San Francisco: Jossey-Bass 187212.Google Scholar
Bai, Y., Wu, L. (2018). Analytic value function for optimal regime-switching pairs trading rules. Quantitative Finance, 18(4), 637654.CrossRefGoogle Scholar
Baumeister, R. F., Vohs, K. D. (2007). Self-regulation, ego depletion, and motivation. Social and Personality Psychology Compass, 1, 115128.CrossRefGoogle Scholar
Beaulieu, J. M., Jhwueng, D. C., Boettiger, C., O’Meara, B. C. (2012). Modeling stabilizing selection: Expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution, 66(8), 23692383.CrossRefGoogle ScholarPubMed
Beskos, A., Papaspiliopoulos, O., Roberts, G. (2009). Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. The Annals of Statistics, 37(1), 223245.CrossRefGoogle Scholar
Beskos, A., Papaspiliopoulos, O., Roberts, G., Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), 333382.CrossRefGoogle Scholar
Buss, K. A., Goldsmith, H. H. (1998). Fear and anger regulation in infancy: Effects on the temporal dynamics of affective expression. Child Development, 69(2), 359374.CrossRefGoogle ScholarPubMed
Calvet, L. E., Fisher, A. J. (2004). How to forecast long-run volatility: Regime switching and the estimation of multifractal processes. Journal of Financial Econometrics, 2(1), 4983.CrossRefGoogle Scholar
Carver, C. S., Scheier, M. F. (1998). On the self-regulation of behavior, New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Chow, S.-M., Bendezú, J. J., Cole, P. M., Ram, N. (2016). A comparison of two-stage approaches for fitting nonlinear ordinary differential equation models with mixed effects. Multivariate Behavioral Research., 51 2–3154184.CrossRefGoogle ScholarPubMed
Chow, S.-M., Grimm, K. J., Guillaume, F., Dolan, C. V., McArdle, J. J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463502.CrossRefGoogle ScholarPubMed
Chow, S.-M., Lu, Z., Sherwood, A., Zhu, H. (2016). Fitting nonlinear ordinary differential equation models with random effects and unknown initial conditions using the stochastic approximation expectation–maximization (SAEM) algorithm. Psychometrika, 81(1), 102134.CrossRefGoogle ScholarPubMed
Chow, S.-M., Witkiewitz, K., Grasman, R. P. P. P., Maisto, S. A. (2015). The cusp catastrophe model as cross-sectional and longitudinal mixture structural equation models. Psychological Methods, 20, 142164.CrossRefGoogle ScholarPubMed
Chow, S.-M., Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika, 78(4), 740768.CrossRefGoogle ScholarPubMed
Cole, P. M., Bendezú, J. J., Ram, N., Chow, S.-M. (2017). Dynamical systems modeling of early childhood self-regulation. Emotion, 17(4), 684699.CrossRefGoogle ScholarPubMed
Cole, P. M., Tan, P. Z., Hall, S. E., Zhang, Y., Crnic, K. A., Blair, C. B. et al (2011). Developmental changes in anger expression and attention focus: Learning to wait. Developmental Psychology, 47(4), 1078.CrossRefGoogle ScholarPubMed
Coleman, J. S. (1968). The mathematical study of change. In Blalock, HM Jr, Blalock, A. (Eds), Methodology in social research, New York: McGraw-Hill 428478.Google Scholar
Collins, L. M., Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 28, 131157.CrossRefGoogle Scholar
Dolan, C. V., Schmittmann, V. D., Lubke, G. H., Neale, M. C. (2005). Regime switching in the latent growth curve mixture model. Structural Equation Modeling, 12(1), 94119.CrossRefGoogle Scholar
Durham, G. B., Gallant, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. Journal of Business & Economic Statistics, 20(3), 297316.CrossRefGoogle Scholar
Elerian, O., Chib, S., Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions. Econometrica, 69(4), 959993.CrossRefGoogle Scholar
Elliott, R. J., Aggoun, L., Moore, J. (1995). Hidden Markov models: Estimation and control, New York: Springer.Google Scholar
Fox, E. B., Sudderth, E. B., Jordan, M. I., Willsky, A. S. (2010). Bayesian nonparametric methods for learning Markov switching processes. IEEE Signal Processing Magazine, 27(6), 4354.Google Scholar
Fraley, C., Raftery, A.E., Murphy, T. B., & Scrucca, L. (2012). Mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation (No. 597). Department of Statistics, University of Washington.Google Scholar
Gates, K. M., Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. Neuroimage, 63, 310319.CrossRefGoogle ScholarPubMed
Gelman, A. (1996). Inference and monitoring convergence. In Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (Eds), Markov chain Monte Carlo in practice, Boca Raton, FL: CRC Press LLC 131143.Google Scholar
Gelman, A., Meng, X.-L., Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6(4), 733760.Google Scholar
Geman, S., Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysisand Machine Intelligence, 6, 721741.CrossRefGoogle ScholarPubMed
Ghysels, E., McCulloch, R. E., Tsay, R. S. (1998). Bayesian inference for periodic regime-switching models. Journal of Applied Econometrics, 13(2), 129143.3.0.CO;2-2>CrossRefGoogle Scholar
Gilks, W. R., Best, N. G., Tan, K. K. C. (1995). Adaptive rejection metropolis sampling within Gibbs sampling. Journal of the Royal Statistical Society Series C (Applied Statistics), 44(4), 455472.Google Scholar
Gill, J. (2014). Bayesian methods: A social and behavioral sciences approach, Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Goldsmith, H. H., Reilly, J. (1993). Laboratory assessment of temperament-preschool version, University of Oregon: Unpublished manual.Google Scholar
Golightly, A., Wilkinson, D. J. (2008). Bayesian inference for nonlinear multivariate diffusion models observed with error. Computational Statistics & Data Analysis, 52(3), 16741693.CrossRefGoogle Scholar
Hall, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: A case study. Biometrics, 56(4), 10301039.CrossRefGoogle ScholarPubMed
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97100.CrossRefGoogle Scholar
Jones, R. H. (1984). Fitting multivariate models to unequally spaced data. In Parzen, E. (Eds), Time series analysis of irregularly observed data, New York: Springer 158188.CrossRefGoogle Scholar
Kass, R. E., Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773795.CrossRefGoogle Scholar
Kim, C.-J., Kim, J. (2015). Bayesian inference in regime-switching ARMA models with absorbing states: the dynamics of the ex-ante real interest rate under regime shifts. Journal of Business & Economic Statistics, 33(4), 566578.CrossRefGoogle Scholar
Kim, C.-J., Nelson, C. R. (1999). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications, Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Kloeden, P. E., Platen, E. (1999). Numerical solution of stochastic differential equations, Berlin: Springer.Google Scholar
Kopp, C. B. (1982). Antecedents of self-regulation: A developmental perspective. Developmental Psychology, 18, 199214.CrossRefGoogle Scholar
Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 114.CrossRefGoogle Scholar
Lanza, S. T., Collins, L. M. (2008). A new SAS procedure for latent transition analysis: Transitions in dating and sexual risk behavior. Developmental Psychology, 44(2), 446456.CrossRefGoogle ScholarPubMed
Lindström, E. (2012). A regularized bridge sampler for sparsely sampled diffusions. Statistics and Computing, 22(2), 615623.CrossRefGoogle Scholar
Lu, Z.-H., Chow, S.-M., Sherwood, A., Zhu, H. (2015). Bayesian analysis of ambulatory blood pressure dynamics with application to irregularly spaced sparse data. The Annals of Applied Statistics, 9(3), 16011620.CrossRefGoogle ScholarPubMed
Maisto, S. A., Xie, F. C., Witkiewitz, K., Ewart, C. K., Connors, G. J., Zhu, H. et al (2017). How chronic self-regulatory stress, poor anger regulation, and momentary affect undermine treatment for alcohol use disorder: Integrating social action theory and the dynamic model of relapse. Journal of Social and Clinical Psychology, 36, 238263.CrossRefGoogle Scholar
Mbalawata, I. S., Särkkä, S., Haario, H. (2013). Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 11951223.CrossRefGoogle Scholar
Molenaar, P. C. M., Newell, K. M. (2003). Direct fit of a theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56, 199214.CrossRefGoogle ScholarPubMed
Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3), 705767.CrossRefGoogle Scholar
Nylund, K. L., Muthén, B., Nishina, A., Bellmore, A., & Graham, S. (2006). Stability and instability of peer victimization during middle school: Using latent transition analysis with covariates, distal outcomes, and modeling extensions. https://scholar.google.com/citations?user=cKtI1DQAAAAJ&hl=en#d=gs_md_cita-d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26user%3DcKtI1DQAAAAJ%26citation_for_view%3DcKtI1DQAAAAJ%3AIjCSPb-OGe4C%26tzom%3D360.Google Scholar
Oravecz, Z., Tuerlinckx, F., Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16, 468490.CrossRefGoogle ScholarPubMed
Oravecz, Z., Tuerlinckx, F., Vandekerckhove, J. (2016). Bayesian data analysis with the bivariate hierarchical Ornstein–Uhlenbeck process model. Multivariate Behavioral Research, 51(1), 106119.CrossRefGoogle ScholarPubMed
Oud, J. H. L., Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199215.CrossRefGoogle Scholar
Oud, J.H.L., & Singer, H. (Eds.). (2008). Special issue: Continuous time modeling of panel data (Vol. 62(1)).Google Scholar
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Hornik, K., Leisch, F., Zeileis, A. (Eds), Proceedings of the 3rd international workshop on distributed statistical computing, Wien: Technische Universit 125.Google Scholar
Ramsay, J. O., Hooker, G., Campbell, D., Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach. Journal of Royal Statistical Society: Series B, 69(5), 741796.CrossRefGoogle Scholar
Roberts, G. O., Stramer, O. (2001). On inference for partial observed nonlinear diffusion models using the Metropolis–Hastings algorithm. Biometrika, 88, 603621.CrossRefGoogle Scholar
Roeder, K., Lynch, K. G., Nagin, D. S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association, 94, 766776.CrossRefGoogle Scholar
Särkkä, S. (2013). Bayesian filtering and smoothing, Hillsdale, NJ: Cambridge University.CrossRefGoogle Scholar
Singer, H. (1992). The aliasing-phenomenon in visual terms. Journal of Mathematical Sociology, 14(1), 3949.CrossRefGoogle Scholar
Singer, H. (2010). SEM modeling with singular moment matrices. Part I: ML-estimation of time series. The Journal of Mathematical Sociology, 34(4), 301320.CrossRefGoogle Scholar
Singer, H. (2012). SEM modeling with singular moment matrices. Part II: ML-estimation of sampled stochastic differential equations. The Journal of Mathematical Sociology, 36(1), 2243.CrossRefGoogle Scholar
Solo, V. (2002). Identification of a noisy stochastic heat equation with the EM algorithm. In Proceedings of the 41st IEEE conference on decision and control, 2002. (Vol. 4, pp. 4505–4508). https://doi.org/10.1109/CDC.2002.1185083.CrossRefGoogle Scholar
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583639.CrossRefGoogle Scholar
Uhlenbeck, G. E., Ornstein, L. S. (1930). On the theory of the Brownian motion. Physical review, 36(5), 823.CrossRefGoogle Scholar
Vehtari, A., Gelman, A., & Gabry, J. (2016). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. arXiv (preprint).Google Scholar
Voelkle, M. C., Oud, J. H. L., Davidov, E., Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176192.CrossRefGoogle ScholarPubMed
Wilhelm, F. H., Grossman, P., Muller, M. I. (2012). Bridging the gap between the laboratory and the real world: Integrative ambulatory psychophysiology. In Mehl, M. R., Conner, T. S. (Eds), Handbook of research methods for studying daily life, New York: Guilford 210234.Google Scholar
Yang, J.-W., Tsai, S.-Y., Shyu, S.-D., Chang, C.-C. (2016). Pairs trading: The performance of a stochastic spread model with regime switching-evidence from the S&P 500. International Review of Economics & Finance, 43, 139150.CrossRefGoogle Scholar
Yang, M., Chow, S.-M. (2010). Using state-space model with regime switching to represent the dynamics of facial electromyography (EMG) data. Psychometrika: Application and Case Studies, 74(4), 744771.CrossRefGoogle Scholar
Yümlü, M. S., Gürgen, F. S., Cemgil, A. T., Okay, N. (2015). Bayesian changepoint and time-varying parameter learning in regime switching volatility models. Digital Signal Processing, 40, 198212.CrossRefGoogle Scholar