Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:13:21.122Z Has data issue: false hasContentIssue false

Dietary conjugated linoleic acid (CLA) intake assessment and possible biomarkers of CLA intake in young women

Published online by Cambridge University Press:  02 January 2007

Dorothee Fremann*
Affiliation:
Lehrstuhl für Ernährungslehre, Department für Lebensmittel und Emährung, Technische Universität München–Weihenstephan, Alte Akademie 16, D-85350 Freising, Germany
Jakob Linseisen
Affiliation:
Lehrstuhl für Ernährungslehre, Department für Lebensmittel und Emährung, Technische Universität München–Weihenstephan, Alte Akademie 16, D-85350 Freising, Germany Deutsches Krebsforschungszentrum, Abteilung für Klinische Epidemiologie, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Günther Wolfram
Affiliation:
Lehrstuhl für Ernährungslehre, Department für Lebensmittel und Emährung, Technische Universität München–Weihenstephan, Alte Akademie 16, D-85350 Freising, Germany
*
*Corresponding author: Email: dorothee.fremann@weihenstephan.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

The habitual intake of the conjugated linoleic acid (CLA) isomer C18:2 c9t11 (rumenic acid, RA) was assessed and compared with plasma biomarkers.

Design:

The newly developed food-frequency questionnaire (FFQ) comprised 46 food items and was validated by means of a 7-day estimated record (7-d ER). Additionally, the dietary intake results of the FFQ, 7-d ER, the last day (1-d ER) and the last two days (2-d ER) before blood sampling of the 7-d ER were compared to the content of C18:2 c9t11 in plasma phospholipids (PL) and triglycerides (TG) as possible biomarkers.

Setting:

Metabolic unit of a university institute.

Subjects:

Fifty-seven students completed both dietary instruments. From all participants fasting blood samples were taken.

Results:

Mean daily intake of rumenic acid was 246 mg day−1 and 323 mg day−1 as measured by the FFQ and the 7-d-ER, respectively. The degree of correspondence between both assessment methods was acceptable; this is indicated by a total kappa value of κ = 0.31 (P < 0.01) and a Pearson correlation coefficient of r = 0.46 (P < 0.01). Rumenic acid content in plasma triglycerides was twice as high as found in phospholipids. The correlation between the intake results gained with the 7-d ER and the plasma PL contents of C18:2 c9t11 was statistically significant; this was also true for the C18:2 c9t11 values in plasma TG compared with the intake results of one or two days before blood sampling.

Conclusions:

Regarding RA intake, the FFQ data revealed an acceptable degree of correspondence with the 7-d ER data but failed to show significant correlations to the potential biomarkers. However, with respect to the results of the 7-d ER, the RA content in plasma PL and TG are possible biomarkers of short-term and medium-term intake, respectively.

Type
Research Article
Copyright
Copyright © CABI Publishing 2002

References

1Sehat, N, Yurawecz, MP, Roach, JA, Mossoba, MM, Kramer, JK, Ku, Y. Silver-ion high-performance liquid chromatographic separation and identification of conjugated linoleic acid isomers. Lipids 1998; 33: 217–21.CrossRefGoogle ScholarPubMed
2Chin, SF, Liu, W, Storkson, J, Ha, YL, Pariza, MW. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Comp. Anal. 1992; 5: 185–97.CrossRefGoogle Scholar
3Kavanaugh, CJ, Liu, KL, Belury, MA. Effect of dietary conjugated linoleic acid on phorbol ester-induced PGE2 production and hyperplasia in mouse epidermis. Nutr. Cancer 1999; 33: 132–8.CrossRefGoogle ScholarPubMed
4Ha, YL, Storkson, J, Pariza, MW. Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivates of linoleic acid. Cancer Res. 1990; 50: 1097–101.Google ScholarPubMed
5Ip, C, Scimeca, JA. Conjugated linoleic acid and linoleic acid are distinctive modulators of mammary carcinogenesis. Nutr. Cancer 1997; 27: 131–5.CrossRefGoogle ScholarPubMed
6Lee, KN, Kritchevsky, D, Pariza, MW. Conjugated linoleic acid and atheriosclerosis in rabbits. Atherosclerosis 1994; 108: 1925.CrossRefGoogle Scholar
7Kritchevsky, D, Tepper, SA, Wright, S, Tso, P, Czarnecki, SK. Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J. Am. Coll. Nutr. 2000; 19: 472S–7S.CrossRefGoogle ScholarPubMed
8Belury, MA. Conjugated dienoic linoleate: a polyunsaturated fatty acid with unique chemoprotective properties. Nutr. Rev. 1995; 53: 83–9.CrossRefGoogle ScholarPubMed
9Park, Y, Storkson, JM, Albright, KJ, Liu, W, Pariza, MW. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 1999; 34: 235–41.CrossRefGoogle ScholarPubMed
10Zambell, KL, Keim, NL, Van Loan, MD, Gale, B, Benito, P, Kelley, DS, Nelson, GJ. Conjugated linoleic acid supplementation in humans: effects on body composition and energy expenditure. Lipids 2000; 35: 777–82.CrossRefGoogle ScholarPubMed
11Medina, EA, Horn, WF, Keim, NL, Havel, PJ, Benito, P, Kelley, DS, Nelson, GJ, Erickson, KL. Conjugated linoleic acid supplementation in humans: effects on circulating leptin concentrations and appetite. Lipids 2000; 35: 783–8.CrossRefGoogle ScholarPubMed
12Kelley, DS, Taylor, PC, Rudolph, IL, Benito, P, Nelson, GJ, Mackey, BE, Erickson, KL. Dietary conjugated linoleic acid did not alter immune status in young healthy women. Lipids 2000; 35: 1065–71.CrossRefGoogle Scholar
13Basu, S, Smedman, AE, Vessby, B. Conjugated linoleic acid induces lipid oxidation in humans. FEBS Lett. 2000; 468: 33–6.CrossRefGoogle ScholarPubMed
14Fritsche, J, Steinhart, H. Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Z. Lebens. Unters. Forsch. A 1998; 206: 7782.CrossRefGoogle Scholar
15Ritzenthaler, KL, McGuire, MK, Falen, R, Shultz, TD, Dasgupta, N, McGuire, MA. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J. Nutr. 2001; 131: 1548–54.CrossRefGoogle ScholarPubMed
16Huang, Y-C, Luedecke, LO, Shultz, TD. Effect of Cheddar cheese consumption on plasma conjugated linoleic acid concentrations in men. Nutr. Res. 1994; 14: 373–86.CrossRefGoogle Scholar
17Jiang, J, Wolk, A, Vessby, B. Relation between the intake of milk fat and the occurrence of conjugated linoleic acid in human adipose tissue. Am. J. Clin. Nutr. 1999; 70: 21–7.CrossRefGoogle ScholarPubMed
18Britton, M, Fong, C, Wickens, D, Yudkin, J. Diet as a source of phospholipid esterified 9,11-octadecadienoic acid in humans. Clin. Sci. 1992; 83: 97101.CrossRefGoogle ScholarPubMed
19Willett, WC. Nutritional Epidemiology. New York: Oxford University Press, 1998.CrossRefGoogle Scholar
20Rohrmann, S. Entwicklung und Validierung von Kurzfragenbögen zur Erfassung der Fettaufnahme.Hannover: Magisterarbeit des Ergänzungsstudiengangs Bevölkerungsmedizin und Gesundheitswesen, 1998Google Scholar
21Gedrich, K. Ökonometrische Bestimmung der Lebensmittel- und Nährstoffzufuhr von Personen anhand des Lebensmittelverbrauch von Haushalten. Frankfurt am Main: Lang, 1997.Google Scholar
22Hofmann, M, Lydtin, H. Bayerisches Kochbuch München: Berkenverlag, 1992.Google Scholar
23Harris, JA, Benedict, FG. Biometric Studies of Basal Metabolism in Man. Washington DC: carnegie Institute of Washington, 1919.Google Scholar
24Schofield, WN. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985; 39: 541.Google ScholarPubMed
25Folch, J, Lees, M, Sloane-Stanley, GA. A simple method for isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957; 226: 497509.CrossRefGoogle Scholar
26Stahl, E. Dünnschichtchromatographie. Berlin: Springer Verlag, 1967.Google Scholar
27Schulte, E, Weber, K. Schnelle Herstellung der Fettsäuremethylester aus Fetten mit Trimethylsulfoniumhydroxid oder Natriummethylat. Fat Sci. Technol. 1989; 5: 181–3.Google Scholar
28Fleiss, JL. The Measurement of Interrater Agreement. New York: John Wiley & Sons, 1981.Google Scholar
29Landis, JR, Koch, GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159–74.CrossRefGoogle ScholarPubMed
30Kemppainen, T, Rosendahl, A, Nuutinen, O, Ebeling, T, Pietinen, P, Uusitupa, M. Validation of a short dietary questionnaire and a qualitative fat index for the assessment of fat intake. Eur. J. Clin. Nutr. 1993; 47: 765–75.Google Scholar
31Riboli, E, Elmstahl, S, Saracci, R, Gullberg, B, Lindgarde, F. The Malmo Food Study: validity of two dietary assessment methods for measuring nutrient intake. Int. J. Epidemiol. 1997; 26(Suppl. 1): S16173.CrossRefGoogle ScholarPubMed
32Decarli, A, Franceschi, S, Ferraroni, M, Gnagnarella, P, Parpinel, MT, La Vecchia, C, Negri, E, Salvini, S, Falcini, F, Giacosa, A. Validation of a food-frequency questionnaire to assess dietary intakes in cancer studies in Italy. Results for specific nutrients. Ann. Epidemiol. 1996; 6: 110–8.CrossRefGoogle ScholarPubMed
33Egami, I, Wakai, K, Kato, K, Lin, Y, Kawamura, T, Tamakoshi, A, Aoki, R, Kojima, M, Nakayama, T, Wada, M, Ohno, Y. A simple food frequency questionnaire for Japanese diet – Part II. Reproducibility and validity for nutrient intakes. J. Epidemiol. 1999; 9: 227–34.CrossRefGoogle ScholarPubMed
34Curtis, AE, Musgrave, KO, Klimis-Tavantzis, D. A food frequency questionnaire that rapidly and accurately assesses intake of fat, saturated fat, cholesterol, and energy. J. Am. Diet. Assoc. 1992; 92: 1517–9.CrossRefGoogle ScholarPubMed
35Bonifacj, C, Gerber, M, Scali, J, Daures, JP. Comparison of dietary assessment methods in a southern French population: use of weighed records, estimated-diet records and a food-frequency questionnaire. Eur. J. Clin. Nutr. 1997; 51: 217–31.CrossRefGoogle Scholar
36Horwath, CC. Validity of a short food frequency questionnaire for estimating nutrient intake in elderly people. Br. J. Nutr. 1993; 70: 314.CrossRefGoogle Scholar
37McPherson, RS, Kohl, HW, Garcia, G, Nichaman, MZ, Hanis, CL. Food-frequency questionnaire validation among Mexican-Americans: Starr County, Texas. Ann. Epidemiol. 1995; 5: 378–85.CrossRefGoogle ScholarPubMed
38Linseisen, J, Wolfram, G. Unterschiede in der Nährstoffzufuhr bei Verwendung verschiedener Nährstoff-Datenbanken – ein Fallbeispiel. Z. Ernährungswiss. 1997; 36: 127–32.CrossRefGoogle Scholar
39Bohlscheid-Thomas, S, Hoting, I, Boeing, H, Wahrendorf, J. Reproducibility and relative validity of energy and macronutrient intake of a food frequency questionnaire developed for the German part of the EPIC project. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997; 26(Suppl. 1): S7181.CrossRefGoogle ScholarPubMed
40Winkler, G. Validierung einer Food-Frequency-Erhebung. Dissertation, Institut für Sozialökonomie, Institut für Epide-miologie, Freising/Neuherberg, 1992.Google Scholar
41Innis, SM, King, DJ. Trans fatty acids in human milk are inversely associated with concentrations of essential all-cis n-6 and n-3 fatty acids and determine trans, but not n-6 and n-3, fatty acids in plasma lipids of breast-fed infants. Am. J. Clin. Nutr. 1999; 70: 383–90.CrossRefGoogle Scholar
42Asciutti-Moura, LS, Guilland, JC, Fuchs, F, Richard, D, Klepping, J. Fatty acid composition of serum lipids and its relation to diet in an elderly institutionalized population. Am. J. Clin. Nutr. 1988; 48: 980–7.CrossRefGoogle Scholar
43Ma, J, Folsom, AR, Eckfeldt, JH, Lewis, L, Chambless, LE. Short- and long-term repeatability of fatty acid composition of human plasma phospholipids and cholesterol esters. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am. J. Clin. Nutr. 1995; 62: 572–8.CrossRefGoogle Scholar
44Herbel, BK, McGuire, MK, McGuire, MA, Shultz, TD. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans. Am. J. Clin. Nutr. 1998; 67: 332–7.CrossRefGoogle Scholar
45Mahfouz, MM, Valicenti, AJ, Holman, RT. Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes. Biochim. Biophys. Acta 1980; 618: 112.CrossRefGoogle ScholarPubMed
46Adlof, RO, Duval, S, Emken, EA. Biosynthesis of conjugated linoleic acid in humans. Lipids 2000; 35: 131–5.CrossRefGoogle ScholarPubMed
47Griinari, JM, Corl, BA, Lacy, SH, Chouinard, PY, Nurmela, KV, Bauman, DE. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase. J. Nutr. 2000; 130: 2285–91.CrossRefGoogle ScholarPubMed
48Martin, J-C, Banni, S. Occurrence, chemistry and nutrition of conjugated linoleic acid. In: Sébédio, JL, Christie, WW, eds. Trans Fatty Acids in Human Nutrition. Dundee: The Oily Press, 1998; 261302.Google Scholar
49Yurawecz, MP, Roach, JA, Sehat, N, Mossoba, M, Kramer, JK, Fritsche, J, Steinhart, H, Ku, Y. A new conjugated linoleic acid isomer, 7 trans, 9 cis-octadecadienoic acid, in cow milk, cheese, beef and human milk and adipose tissue. Lipids 1998; 33: 803–9.CrossRefGoogle ScholarPubMed