Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T05:45:17.986Z Has data issue: false hasContentIssue false

Galactic Cosmic Ray Anisotropies in the Energy Range 1011 – 1014eV.

Published online by Cambridge University Press:  25 April 2016

R.M. Jacklyn*
Affiliation:
Antarctic Division, Department of Science

Abstract

A review is presented of the evidence for anisotropies of galactic origin in the charged cosmic ray particle intensity at median primary energies of detection in the range 1011 – 1014eV. It concerns the period from 1958, when the first substantial long-term observations at energies of solar and sidereal modulation near 1011eV commenced underground, until 1984, by which time results were available from a number of years of accurate observations with detectors of small air showers at energies near 1014eV, too high for complicating effects of solar origin to be present. There is evidence for the existence of both unidirectional and bidirectional galactic anisotropies over the whole energy range. Tentative descriptive models are discussed in relation to advances both in solar and sidereal analytical techniques and in the ability of experimenters to account for and exploit the modulating influence of the heliomagnetosphere at the lower energies of detection.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, H. D., 1959, Astrophys. J., 130, 364.CrossRefGoogle Scholar
Bercovitch, M., 1984, Proc. Int. Symp. on Cosmic Ray Modulation in the Heliosphere, Morioka, 329.Google Scholar
Compton, A. H.and Getting, I. A., 1935, Phys. Rev., 47, 817.CrossRefGoogle Scholar
Davis, L., 1954, Phys. Rev., 96, 743.CrossRefGoogle Scholar
Fenton, A. G.and Fenton, K. B., 1972, Proc. Astron. Soc. Aust., 2, 139.CrossRefGoogle Scholar
Fenton, A. G., 1976, Proc. Int. Symp. on High Energy Cosmic Ray Modulation, Tokyo 92 Google Scholar
Fenton, A. G., Fenton, K. B., Humble, J. E., Jacklyn, R. M., Vrana, A., Murakami, K., Fujii, Z., Yamada, T., Sakakibara, S., Fujimoto, K., Ueno, H., Nagashima, K. and Kondo, I., 1982, Proc. Astron. Soc. Aust., 4, 456.Google Scholar
Farley, F. J. M. and Storey, J. R., 1954, Proc. Phys. Soc. (A), 67, 996.CrossRefGoogle Scholar
Fujimoto, K., Inoue, A., Murakami, K. and Nagashima, K., 1984, Rep. No. 9, Cosmic Ray Res. Lab., Nagoya.Google Scholar
Howard, R., 1974, Solar Physics, 38, 283.Google Scholar
Jacklyn, R. M., 1962, Nuovo Cim., 24, 1034.CrossRefGoogle Scholar
Jacklyn, R. M., 1963, Nuovo Cim., 30, 40.Google Scholar
Jacklyn, R. M., 1966, Nature, 211, 690.Google Scholar
Jacklyn, R. M., 1970, ANARE Rep. Series C(II), Cosmic Rays, Pub. 114 (Australia).Google Scholar
Jacklyn, R. M.and Vrana, A., 1969, Proc. Astron. Soc. Aust., 1, 278.CrossRefGoogle Scholar
Jacklyn, R. M.and Cooke, D. J., 1971, Proc. 12th. Int. Cosmic Ray Conf., Hobart, 1, 290.Google Scholar
Jacklyn, R. M. andDuldig, M. L., 1983, Proc. 18th. Int. Cosmic Ray Conf., Bangalore, 3, 391.Google Scholar
Jacklyn, R. M.and Duldig, M. L., 1985, Proc. 19th. Int. Cosmic Ray Conf., La Jolla, 5, 44.Google Scholar
Lange, I. and Forbush, S. E., 1948, Carnegie Inst., Washington, Pub. 175, Vol. 14.Google Scholar
Lange, I. and Forbush, S. E., 1957, Carnegie Inst., Washington, Pub. 175, Vol. 20.Google Scholar
Murakami, K., Fujii, Z., Yamada, T., Sakakibara, S., Fujimoto, K., Ueno, H., Nagashima, K., Kondo, K., Fenton, A. G., Fenton, K. B., Humble, J. E., Bolton, K., Jacklyn, R. M.and Duldig, M. L., 1984, Proc. Int. Symp. on Cosmic Ray Modulation in the Heliosphere, Morioka, 322.Google Scholar
Nagashima, K., 1971, Rep. lonosph. Space Res., Japan, 25, 189.Google Scholar
Nagashima, K. and Ueno, H., 1971, Rep. lonosph. Space Res., Japan, 25, 212.Google Scholar
Nagashima, K., Ueno, H., Fujimoto, K., Fujii, Z. and Kondo, I., 1972a, Rep. lonosph. Space Res., Japan, 26, 1.Google Scholar
Nagashima, K., Fujimoto, K., Fujii, Z., Ueno, H. and Kondo, I., 1972b, Rep. lonosph. Space Res., Japan, 26, 31.Google Scholar
Nagashima, K., Ueno, H., Fujimoto, K., Fujii, Z., Sakakibara, S. and Kondo, I., 1975, Proc. 14th. Int. Cosmic Ray Conf, Munich, 4, 1503.Google Scholar
Nagashima, K. and Mori, S., 1976, Proc. Int. Symp. on High Energy Cosmic Ray Modulation, Tokyo, 326.Google Scholar
Nagashima, K., Morishita, I. and Yasue, S., 1982, Planet. Space Sci., 30, 879.Google Scholar
Nagashima, K. and Morishita, I., 1983a, Rep. No. 8, Cosmic Ray Res. Lab., Nagoya.Google Scholar
Nagashima, K., Morishita, I. and Yasue, S., 1983b, Planet. Space Sci., 31, 1259.Google Scholar
Nagashima, K., Sakakibara, S., Fenton, A. G.and Humble, J. E., 1985, Planet. Space Sci., 33, 395.Google Scholar
Ness, N. F.and Wilcox, J. M., 1965, Science, 148, 1592.Google Scholar
Parker, E. N., 1963, Interplanetary Dynamical Processes, Interscience, New York.Google Scholar
Sakakibara, S., Ueno, H., Fujimoto, K., Kondo, I. and Nagashima, K., 1973, Proc. 13th. Int. Cosmic Ray Conf, Denver, 2, 1058.Google Scholar
Sakakibara, S., Ueno, H., Fujimoto, K., Fujii, Z., Kondo, I. and Nagashima, K., 1984, Proc. Int. Symp. on Cosmic Ray Modulation in the Heliosphere, Morioka, 314.Google Scholar
Sekido, Y., Nagashima, K., Kondo, I. and Sakakibara, S., 1971, Proc. 12th. Int. Cosmic Ray Conf, Hobart, 1, 302.Google Scholar
Sekido, Y., Sakakibara, S. and Fenton, A. G., 1976, Proc. Int. Symp. on High Energy Cosmic Ray Modulation, Tokyo, 310.Google Scholar
Somogyi, A. J., 1976, Proc. Int. Symp. on High Energy Cosmic Ray Modulation, Tokyo, 85.Google Scholar
Svalgaard, L. and Wilcox, J. M., 1976, Nature, 262, 766.Google Scholar
Swinson, D. B., 1969, J. Geophys. Res., 74, 5591.Google Scholar
Ueno, H., Fujii, Z., Mori, S. and Nagashima, K., 1984, Proc. Int. Symp. on Cosmic Ray Modulation in the Heliosphere, Morioka, 349.Google Scholar