Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:48:24.339Z Has data issue: false hasContentIssue false

Alfvén Waves in Current-carrying Solar Magnetic Flux Tubes

Published online by Cambridge University Press:  25 April 2016

N. F. Cramer
Affiliation:
School of Physics, University of Sydney
I. J. Donnelly
Affiliation:
Australian Atomic Energy Commission Research Establishment, Sutherland, N.S.W.

Extract

In theories of the heating of the solar corona a number of authors have recently considered the propagation and damping of fast and slow magnetohydrodynamic waves, in the form of surface waves localized on the interfaces of coronal flux tubes (Ionson 1978, Wentzel 1979, Roberts 1981, Cramer and Donnelly 1983). The damping of these waves occurs, in addition to a rather weak global damping due to viscous or resistive dissipation, by means of a localized absorption at a so-called ‘resonance’ in the density or magnetic field profile forming the flux tube. At such a resonance, the wave frequency is equal to the local value of the Alfven wave frequency, in the case of Alfven resonance absorption, or at the local slow mhd wave frequency, in the case of the ‘cusp’ or ‘compressive singularity’ resonance in a finite pressure plasma.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anzer, U., Solar Phys. 3, 298 (1968).Google Scholar
Appert, K., Gruber, R. and Vaclavik, J. Phys. Fluids 17, 1471 (1974).Google Scholar
Appert, K., Gruber, R., Troyon, F. and Vaclavik, J. Plasma Phys. 24, 1147 (1982).Google Scholar
Chiuderi, C. and Einaudi, G., Solar Phys. 73, 89 (1981).Google Scholar
Cramer, N. F. and Donnelly, I. J., Proc. Astron. Soc. Aust., 5, 196 (1983).CrossRefGoogle Scholar
Cramer, N. F. and Donnelly, I. J. Plasma Phys., submitted (1984).Google Scholar
Galeev, A. A., Rosner, R., Serio, S. and Vaiana, G. S., Astrophys. J., 243, 301 (1981).CrossRefGoogle Scholar
Geodbloed, J. P. and Hagebeuk, H. J. L., Phys. Fluids 15, 1090 (1972).Google Scholar
Heyvaerts, J. and Priest, E. R., Astron. Astrophys. 117, 220 (1983).Google Scholar
Hollweg, J. V., Astrophys. J. 277, 392 (1984).Google Scholar
Ionson, J. A., Astrophys. J. 226, 650 (1978).Google Scholar
Ionson, J. A., Astrophys. J. 254, 318 (1983).Google Scholar
Ionson, J. A., Astrophys. J. 276, 357 (1984).Google Scholar
Lundquist, S., Phys. Rev. 83, 307 (1951).Google Scholar
Raadu, M. A., Solar Phys. 22, 425 (1972).Google Scholar
Roberts, B., Solar Phys. 69, 27 (1981).Google Scholar
Rosner, R., Golub, L., Coppi, B. and Vaiana, G. S., Astrophys. J. III, 317 (1978).CrossRefGoogle Scholar
Spruit, H. C., Solar Phys. 75, 3 (1982).Google Scholar
Voslamber, D. and Callebaut, D. K., Phys. Rev. 128, 2016 (1962).CrossRefGoogle Scholar
Wentzel, D. G., Astrophys. J. 233, 756 (1979).Google Scholar