Published online by Cambridge University Press: 25 April 2016
In theories of the heating of the solar corona a number of authors have recently considered the propagation and damping of fast and slow magnetohydrodynamic waves, in the form of surface waves localized on the interfaces of coronal flux tubes (Ionson 1978, Wentzel 1979, Roberts 1981, Cramer and Donnelly 1983). The damping of these waves occurs, in addition to a rather weak global damping due to viscous or resistive dissipation, by means of a localized absorption at a so-called ‘resonance’ in the density or magnetic field profile forming the flux tube. At such a resonance, the wave frequency is equal to the local value of the Alfven wave frequency, in the case of Alfven resonance absorption, or at the local slow mhd wave frequency, in the case of the ‘cusp’ or ‘compressive singularity’ resonance in a finite pressure plasma.