Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T11:24:07.707Z Has data issue: false hasContentIssue false

An Emission Line Model for AM Herculis Systems: Application to E1405-451

Published online by Cambridge University Press:  25 April 2016

Lilia Ferrario
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University
D. T. Wickramasinghe
Affiliation:
Department of Mathematics, The Australian National University
I. R. Tuohy
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University

Abstract

The optical spectra of the AM Herculis binaries are characterized by extremely complex emission lines whose profiles can be resolved into at least three components which are formed in different regions of the accretion stream leading from the companion star towards the magnetic white dwarf. We present a theoretical model which localizes the formation region of the broad emission line component and provides information regarding the structure of this emitting region. In our model the particle trajectories are integrated in a Roche potential and the volume between the white dwarf and the companion has been divided into two different regimes of motion. In one region the gas escapes from the secondary near the inner Lagrange point and is accelerated along a straight line towards the white dwarf. In the other region the magnetic field is strong enought to divert the gas out of the orbital plane and to channel it towards the white dwarfs surface. The model has been used to interpret radial velocity and velocity dispersion data from the AM Herculis system E1405-451.

Type
Theoretical
Copyright
Copyright © Astronomical Society of Australia 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfvén, H., and Falthämmar, C., 1963, Cosmical Electrodynamics, (Oxford: Clarendon Press)Google Scholar
Beuermann, K., Stella, L., and Patterson, J., 1987, Astrophys. J., 316, 360.Google Scholar
Cropper, M., Menzies, J. W., and Tapia, S., 1986, Mon. Not. R. Astron. Soc., 218, 201.Google Scholar
Ferrado, L., Wickramasinghe, D. T., and Tuohy, I. R., 1987, Astrophys. J., to be submitted.Google Scholar
Kopal, Z., 1959, Close Binary Systems, (London: Chapman and Hall), p. 125.Google Scholar
Lamb, D. Q., 1985, in Cataclysmic Variables and Low-Mass X-ray Binaries, ed. Lamb, D. Q. and Patterson, J. (Dordrecht: Reidel), p. 179.Google Scholar
Libert, J., and Stockman, H. S., 1985, in Cataclysmic Variables and Low-Mass X-ray Binaries, ed. Lamb, D. Q. and Patterson, J. (Dordrecht: Reidel), p. 151.Google Scholar
Piirola, V., Reiz, A., and Coyne, S. J., 1987a, Astron. Astrophys., submitted.Google Scholar
Piirola, V., Reiz, A., and Coyne, S. J., 1987b, Astron. Astrophys., submitted.Google Scholar
Rosen, S. R., Mason, K. O., and Córdova, F. A., 1986, Mon. Not. R. Astron. Soc., 224, 987.Google Scholar
Schmidt, G. D., Stockman, H. S., and Grandi, S. A., 1986, Astrophys. J., 300, 804.Google Scholar
Schneider, D. P., and Young, P., 1980, Astrophys. J., 238, 946.Google Scholar
Tapia, S., 1982, IAU Circ. 3685.Google Scholar
Tuohy, I. R., Ferrano, L., Wickramasinghe, D. T., and Hawkins, M. R. S., 1987, Proc. Astron. Soc. Aust., 7, 60.Google Scholar
Tuohy, I. R., Visvanathan, N., and Wickramasinghe, D. T., 1985, Astrophys. J., 289, 721.Google Scholar
Visvanathan, N., and Tuohy, I. R., 1983, Astrophys. J., 275, 709.Google Scholar
Wickramasinghe, D. T., and Ferrario, L., 1987, Proc. Astron. Soc. Aust., 7, 123.Google Scholar
Wickramasinghe, D. T., and Meggitt, S. M.A., 1985, Mon. Not. R. Aston. Soc., 216, 857.Google Scholar
Wickramasinghe, D. T., Tuohy, I. R., and Visvanathan, N., 1987, Astrophys. J., 318, 326.Google Scholar