Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T16:28:21.821Z Has data issue: false hasContentIssue false

An Evaluation of the Excitation-Class Parameter for the Central Stars of Planetary Nebulae

Published online by Cambridge University Press:  02 January 2013

Warren A. Reid*
Affiliation:
Faculty of Science, Macquarie University, Sydney, NSW 2109
Quentin A. Parker
Affiliation:
Faculty of Science, Macquarie University, Sydney, NSW 2109 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710
*
CCorresponding author. Email: warren@science.mq.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The three main methods currently in use for estimating the excitation class of planetary nebulae (PNe) central stars are compared and evaluated using 586 newly discovered and previously known PNe in the Large Magellanic Cloud (LMC). In order to achieve this we ran a series of evaluation tests using line ratios derived from de-reddened, flux-calibrated spectra. Pronounced differences between the methods are exposed after comparing the distribution of objects to their derived excitation. Line ratio comparisons show that each method's input parameters have a strong effect on the estimated excitation of a central star. Diagrams were created by comparing excitation classes with Hβ line fluxes. The best methods are then compared to published temperatures using the Zanstra method and assessed for their ability to reflect central star effective temperatures and evolution. As a result we call for a clarification of the term ‘excitation class’ according to the different input parameters used. The first method, which we refer to as Exneb relies purely on the ratios of certain key emission lines. The second method, which we refer to as Ex* includes modeling to create a continuous variable and, for optically thick PNe in the Magellanic Clouds, is designed to relate more closely to intrinsic stellar parameters. The third method, we refer to as Ex[Oiii]/Hβ since the [Oiii]/Hβ ratio is used in isolation to other temperature diagnostics. Each of these methods is shown to have serious drawbacks when used as an indicator for central star temperature. Finally, we suggest a new method (Exρ) for estimating excitation class incorporating both the [Oiii]/Hβ and the HeII λ4686/Hβ ratios. Although any attempt to provide accurate central star temperatures using the excitation class derived from nebula lines will always be limited, we show that this new method provides a substantial improvement over previous methods with better agreement to temperatures derived through the Zanstra method.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Aller, L. H., 1956, Gaseous Nebulae (New York: Wiley)Google Scholar
Acker, A., 1992, ESOC, 43, 163Google Scholar
Caldwell, J. A. R. & Coulson, I. M., 1986, MNRAS, 218, 223CrossRefGoogle Scholar
Ciardullo, R., Jacoby, G., Ford, H. C. & Neill, J. D., 1989, ApJ, 339, 53Google Scholar
Ciardullo, R. & Jacoby, G. H., 1999, ApJ, 515, 191CrossRefGoogle Scholar
de Koter, A., Heap, S. R. & Hubeny, I., 1998, ApJ, 509, 879CrossRefGoogle Scholar
Dopita, M. A., Meatheringham, S. J., Wood, P. R., Webster, B. L., Morgan, D. H. & Ford, H. C., 1987, ApJ, 315L, 107CrossRefGoogle Scholar
Dopita, M. A., Meatheringham, S. J., Webster, B. L. & Ford, H. C., 1988, ApJ, 327, 639CrossRefGoogle Scholar
Dopita, M. A. & Meatheringham, S. J., 1990, ApJ, 357, 140CrossRefGoogle Scholar
Dopita, M. A., Jacoby, G. H. & Vassiliadis, E., 1992, ApJ, 389, 27CrossRefGoogle Scholar
Feast, M. W., 1968, MNRAS, 140, 345Google Scholar
Gruenwald, R. & Viegas, S. M., 2000, ApJ, 339, 872Google Scholar
Guenthner, K., Monteiro, H. S. A. & Schwarz, H. E., 2003, AAS, 203, 1108Google Scholar
Gurzadyan, G. A., 1988, ApSS, 149, 343Google Scholar
Gurzadyan, G. A., 1991, ApSS, 179, 293Google Scholar
Harm, R. & Schwarzschild, M., 1975, ApJ, 200, 324Google Scholar
Harman, R. F. & Seaton, M. J., 1966, MNRAS, 132, 15Google Scholar
Henize, K. G. & Westerlund, B. E., 1963, ApJ, 137, 747CrossRefGoogle Scholar
Holovatyy, V. V., Melekh, B. Ya. & Havrylova, N. V., 2008, ARep, 52, 327Google Scholar
Iben, I. Jr., 1984, ApJ, 277, 333CrossRefGoogle Scholar
Jacoby, G. H., 1989, ApJ, 339, 39CrossRefGoogle Scholar
Jacoby, G. H. & Kaler, J. B., 1989, AJ, 98, 5, 1662CrossRefGoogle Scholar
Kaler, J. B., 1983, ApJ, 271, 188Google Scholar
Kaler, J. B. & Jacoby, G. H., 1989, ApJ, 345, 871Google Scholar
Kaler, J. B. & Jacoby, G. H., 1990, ApJ, 362, 491CrossRefGoogle Scholar
Keller, S. C. & Wood, P. R., 2006, ApJ, 642, 834CrossRefGoogle Scholar
Kwok, S., 1982, ApJ, 258, 280CrossRefGoogle Scholar
Kwok, S., Purton, C. R. & Fitzgerald, P. M., 1978, ApJ, 219, L125CrossRefGoogle Scholar
Martin, L. P. & Viegas, S. M., 2002, A&A, 387, 1074Google Scholar
Mathews, W. G., 1966, ApJ, 143, 173CrossRefGoogle Scholar
Méndez, R. H., Kudritzki, R. P. & Herrero, A., 1992, A&A, 260, 329Google Scholar
Miszalski, B., Parker, Q. A., Acker, A., Birkby, J. L., Frew, D. J. & Kovacevic, A., 2008, MNRAS, 384, 525Google Scholar
Morgan, D. H., 1984, MNRAS, 208, 633Google Scholar
Nandy, K., Morgan, D. H., Willis, A. J., Wilson, R. & Gondhalekar, P. M., 1981, MNRAS, 196, 955Google Scholar
Parker, Q. A. et al. , 2005, MNRAS, 362, 689Google Scholar
Parker, Q. A. et al. , 2006, MNRAS, 373, 79Google Scholar
Reid, W. A. & Parker, Q. A., 2006a, MNRAS, 365, 401Google Scholar
Reid, W. A. & Parker, Q. A., 2006b, MNRAS, 373, 521Google Scholar
Reid, W. A. & Parker, Q. A., 2010, MNRAS (in press)Google Scholar
Reid, W. A., 2007, PhD Thesis, Macquarie University, SydneyGoogle Scholar
Schmidt-Voigt, M. & Köppen, J., 1987, A&A, 174, 211Google Scholar
Schönberner, D., 1979, A&A, 79, 108Google Scholar
Schönberner, D., 1981, A&A, 103, 119Google Scholar
Schönberner, D., 1983, ApJ, 272, 708CrossRefGoogle Scholar
Schönberner, D. & Tylenda, R., 1990, A&A, 234, 439Google Scholar
Schwarz, H. E. & Monteiro, H., 2006, ApJ, 648, 430CrossRefGoogle Scholar
Sofia, S. & Hunter, J. H., 1968, ApJ, 152, 405CrossRefGoogle Scholar
Stanghellini, L., Shaw, R., Mutchler, M., Palen, S., Balick, B. & Blades, J. C., 2002a, ApJ, 575, 178CrossRefGoogle Scholar
Stanghellini, L., Villaver, E., Manchado, A. & Guerrero, M. A., 2002b, ApJ, 576, 285Google Scholar
Stasinska, G. & Tylenda, R., 1986, A&A, 155, 137Google Scholar
Stasinska, G., 1989, A&A, 213, 274Google Scholar
Stasinska, G., 2008, EAS, 32, 173Google Scholar
Terzian, Y., 1997, IAUS, 180, 29Google Scholar
van der Marel, R. & Cioni, M., 2001, AJ, 122, 1807CrossRefGoogle Scholar
Villaver, E., Stanghellini, L. & Shaw, R. A., 2003, ApJ, 597, 298Google Scholar
Villaver, E., Stanghellini, L. & Shaw, R. A., 2007, ApJ, 656, 840CrossRefGoogle Scholar
Webster, B. L., 1975, MNRAS, 173, 437Google Scholar
Wood, P. R. & Faulkner, D. J., 1986, ApJ, 211, 499CrossRefGoogle Scholar