Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:38:13.219Z Has data issue: false hasContentIssue false

The Completeness and Reliability of Threshold and False-discovery Rate Source Extraction Algorithms for Compact Continuum Sources

Published online by Cambridge University Press:  02 January 2013

M. T. Huynh*
Affiliation:
International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, WA 6009, Australia
A. Hopkins
Affiliation:
Australian Astronomical Observatory, P.O. Box 296, Epping NSW 1710, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
R. Norris
Affiliation:
CSIRO Astronomy & Space Sciences, Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia
P. Hancock
Affiliation:
Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
T. Murphy
Affiliation:
Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia School of Information Technologies, The University of Sydney, NSW 2006, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
R. Jurek
Affiliation:
CSIRO Astronomy & Space Sciences, Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia
M. Whiting
Affiliation:
CSIRO Astronomy & Space Sciences, Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia
*
GCorresponding author. Email: minh.huynh@uwa.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The process of determining the number and characteristics of sources in astronomical images is so fundamental to a large range of astronomical problems that it is perhaps surprising that no standard procedure has ever been defined that has well-understood properties with a high degree of statistical rigour on completeness and reliability. The Evolutionary Map of the Universe (EMU) survey with the Australian Square Kilometre Array Pathfinder (ASKAP), a continuum survey of the Southern Hemisphere up to declination +30°, aims to utilise an automated source identification and measurement approach that is demonstrably optimal, to maximise the reliability, utility and robustness of the resulting radio source catalogues. A key stage in source extraction methods is the background estimation (background level and noise level) and the choice of a threshold high enough to reject false sources, yet not so high that the catalogues are significantly incomplete. In this analysis, we present results from testing the SExtractor, Selavy (Duchamp), and SFIND source extraction tools on simulated data. In particular, the effects of background estimation, threshold and false-discovery rate settings are explored. For parameters that give similar completeness, we find the false-discovery rate method employed by SFIND results in a more reliable catalogue compared to the peak threshold methods of SExtractor and Selavy.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2012

References

Bertin, E. & Arnouts, S., 1996, A&AS, 117, 393Google Scholar
Da Costa, G. S., 1992, in Astronomical CCD Observing and Reduction Techniques, ed. Howell, S. B., ASP, 23, 90Google Scholar
DeBoer, D. R., et al. , 2009, IEEE Proceedings, 97, 1507CrossRefGoogle Scholar
Hopkins, A. M., Mobasher, B., Cram, L. & Rowan-Robinson, M., 1998, MNRAS, 296, 839CrossRefGoogle Scholar
Hopkins, A. M., Miller, C. J., Connolly, A. J., Genovese, C., Nichol, R. C. & Wasserman, L., 2002, AJ, 123, 1086CrossRefGoogle Scholar
Huynh, M. T., Jackson, C. A., Norris, R. P. & Prandoni, I., 2005, AJ, 130, 1373CrossRefGoogle Scholar
Johnston, S. et al. , 2008, ExA, 22, 151Google Scholar
Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson, J. G. & Sadler, E. M., 2003, MNRAS, 342, 1117CrossRefGoogle Scholar
Miller, C. J. et al. , 2001, AJ, 122, 3492CrossRefGoogle Scholar
Murphy, T., Mauch, T., Green, A., Hunstead, R.W., Piestrzynska, B., Kels, A. P. & Sztajer, P., 2007, MNRAS, 382, 382CrossRefGoogle Scholar
Norris, R. P., et al. , 2011, submitted to PASAGoogle Scholar
Planck Collaboration, 2011, submitted to A&A, arXiv:1101.2041Google Scholar
Rich, J. W., de Blok, W. J. G., Cornwell, T. J., Brinks, E., Walter, F., Bagetakos, I. & Kennicutt, R. C. Jr., 2008, AJ, 136, 2897CrossRefGoogle Scholar
Schinnerer, E. et al. , 2007, ApJS, 172, 46CrossRefGoogle Scholar
Schinnerer, E. et al. , 2010, ApJS, 188, 384CrossRefGoogle Scholar
White, R. L., Becker, R. H., Helfand, D. J. & Gregg, M. D., 1997, ApJ, 475, 479CrossRefGoogle Scholar
Whiting, M. T., 2008, in Galaxies in the Local Volume, ed. Koribalski, B. S. & Jerjen, H., Astrophysics and Space Science Reviews (Springer), 343.CrossRefGoogle Scholar
Wilman, R. J., et al. , 2008, MNRAS, 388, 1335Google Scholar
Wilman, R. J., Jarvis, M. J., Mauch, T., Rawlings, S. & Hickey, S., 2010, MNRAS, 405, 447Google Scholar