Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T12:46:07.735Z Has data issue: false hasContentIssue false

Dynamical and Chemical Evolution of IZw18

Published online by Cambridge University Press:  05 March 2013

Simone Recchi*
Affiliation:
Institut für theoretische Physik und Astrophysik, Kiel University, 24098 Kiel, Germany Max-Planck Institut für Astrophysik, 85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the effect of different star formation regimes on the dynamical and chemical evolution of IZw18, the most metal-poor dwarf galaxy locally known. To do that we adopt a two-dimensional hydrocode coupled with detailed chemical yields originating from Type II and Type Ia supernovae and from intermediate-mass stars. Particular emphasis is devoted to the problem of mixing of metals. We conclude that, under particular conditions, cooling of metals occurs with a timescale of the order of 10 Myr, thus confirming the hypothesis of instantaneous mixing adopted in chemical evolution models. We try to draw conclusions about the star formation history and the age of the last burst in IZw18.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Aloisi, A., Tosi, M., & Greggio, L. 1999, AJ, 118, 302 (ATG)Google Scholar
Aloisi, A., Savaglio, S., Heckman, T. M., Hoopes, C. G., Leitherer, C., & Sembach, K. R. 2003, ApJ, 595, 760 CrossRefGoogle Scholar
Chiappini, C., Romano, D., & Matteucci, F. 2003, MNRAS, 339, 63 Google Scholar
Garnett, D. R., Dufour, R. J., Peimbert, M., et al. 1995, ApJ, 471, L87 Google Scholar
Hunt, L. K., Thuan, T. X., & Izotov, Y. I. 2003, ApJ, 588, 281 CrossRefGoogle Scholar
Hunter, D. A., & Thronson, H. A. 1995, ApJ, 452, 238 Google Scholar
Izotov, Y. I., & Thuan, T. X. 1999, ApJ, 511, 639 Google Scholar
Lecavelier des Etangs, A., Désert, J.-M., Kunth, D., et al. 2004, A&A, 413, 131 Google Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3 CrossRefGoogle Scholar
Martin, C. L. 1996, ApJ, 465, 680 Google Scholar
Mas-Hesse, J. M., & Kunth, D. 1999, A&A, 349, 765 Google Scholar
Matteucci, F. 1996, Fund. Cosm. Phys., 17, 283 Google Scholar
Meynet, G., & Maeder, A. 2002, A&A, 390, 561 (MM02)Google Scholar
Östlin, G. 2000, ApJ, 535, L99 Google Scholar
Pustilnik, S. A., Kniazev, A. Y., Pramskij, A. G., Ugryumov, A. V., & Masegosa, J. 2003, A&A, 409, 917 Google Scholar
Recchi, S., Matteucci, F., & D'Ercole, A. 2001, MNRAS, 322, 800 CrossRefGoogle Scholar
Recchi, S., Matteucci, F., D'Ercole, A., & Tosi, M. 2002, A&A, 384, 799 Google Scholar
Renzini, A. 1997, ApJ, 488, 35 CrossRefGoogle Scholar
Renzini, A., & Voli, M. 1981, A&A, 94, 175 Google Scholar
Skillman, E. D., & Kennicutt, R. C. 1993, ApJ, 411, 655 Google Scholar
Skillman, E. D., Côté, S., & Miller, B. W. 2003, AJ, 125, 610 Google Scholar
Strickland, D. K., & Stevens, L. R. 2000, MNRAS, 314, 511 CrossRefGoogle Scholar
van den Hoek, L. B., & Groenewegen, M. A. T. 1997, A&AS, 123, 305 Google Scholar
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181 Google Scholar