Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T06:27:07.786Z Has data issue: false hasContentIssue false

Evolution of Rotating AGB Stars and the s-Process Nucleosynthesis

Published online by Cambridge University Press:  05 March 2013

Lionel Siess*
Affiliation:
Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP 226, B-1050 Brussels, Belgium
Stéphane Goriely
Affiliation:
Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, CP 226, B-1050 Brussels, Belgium
Norbert Langer
Affiliation:
Astronomical Institute, Universiteit Utrecht, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new results on the evolution and nucleosynthesis in rotating AGB stars. We analyse the role of the gradient of mean molecular weight in the mixing process and show that neglecting this component induces a potentially strong third dredge-up. We also quantify the impact of rotation on the structure and conclude that the effects of rotation (1) mainly concern the inner, fast rotating regions of the stars and (2) are relatively weak as long as rotational mixing does not induce a deep third dredge-up. We also focus our investigations on the s-process nucleosynthesis and show that rotational mixing tends to inhibit the production of s-elements. This results from the contamination of the 13C-rich layers responsible for the neutron production by the poisonous 14N. Our calculations also indicate that the distribution of s-process elements depends sensitively on the magnitude of the diffusion coefficient. These results suggest that rotational mixing is not the main mechanism responsible for the production of s-elements in AGB stars, but that it can influence, and in particular reduce, the final enrichment in s-elements.

Type
Sixth Torino Workshop
Copyright
Copyright © Astronomical Society of Australia 2003

References

Angulo, C., et al. 1999, Nucl. Phys. A, 656, 3 CrossRefGoogle Scholar
Brown, P. N., Hindmarsh, A. C., & Petzold, L. R. 1994, SIAM J. Sci. Comp., 15, 1467 CrossRefGoogle Scholar
Brown, P. N., Hindmarsh, A. C., & Petzold, L. R. 1998, SIAM J. Sci. Comp., 19, 1495 CrossRefGoogle Scholar
Denissenkov, P. A., & Tout, C. A. 2003, MNRAS, 340, 722 CrossRefGoogle Scholar
Freytag, B., Ludwig, H.-G., & Steffen, M. 1996, A&A, 313, 497 Google Scholar
Frost, C. A., & Lattanzio, J. C. 1996, ApJ, 473, 383 CrossRefGoogle Scholar
Goriely, S. 1999, A&A, 342, 881 Google Scholar
Goriely, S., & Mowlavi, N. 2000, A&A, 362, 599 Google Scholar
Goriely, S., & Siess, L. 2001, A&A, 378, L25 Google Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 1033 CrossRefGoogle Scholar
Herwig, F. 2000, A&A, 360, 952 Google Scholar
Herwig, F., Blöcker, T., & Schönberner, D. 1997, A&A, 324, L81 Google Scholar
Herwig, F., Lugaro, M., & Langer, N. 2003, ApJ, 593, 1056 CrossRefGoogle Scholar
Jorissen, A., & Goriely, S. 2001, Nuc. Phys., A688, 45c Google Scholar
Karakas, A. I., Lattanzio, J. C., & Pols, O. R. 2002, PASA, 19, 515 CrossRefGoogle Scholar
Langer, N., Heger, A., Wellstein, S., & Herwig, F. 1999, A&A, 346, L37 Google Scholar
Mowlavi, N. 1999, A&A, 344, 617 Google Scholar
Palacios, A., Talon, S., Charbonnel, C., & Forestini, M. 2003, A&A, 399, 603 Google Scholar
Pols, O. R., & Tout, C. A. 2000, Mem. Soc. Astron. Italiana, 72, 299 Google Scholar
Straniero, O., et al. 1997, ApJ, 478, 332 CrossRefGoogle Scholar
Takahashi, K., & Yokoi, K. 1987, At. Data Nucl. Data Tables, 36, 375 CrossRefGoogle Scholar
Zahn, J. P. 1992, A&A, 265, 115 Google Scholar