Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:25:40.628Z Has data issue: false hasContentIssue false

The Galactic Halo Ionising Field

Published online by Cambridge University Press:  05 March 2013

J. Bland-Hawthorn
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia; jbh@aaossz.aao.gov.au
P. R. Maloney
Affiliation:
CASA, University of Colorado, Boulder, CO 80309-0389, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There has been much debate in recent decades as to what fraction of ionising photons from star-forming regions in the Galactic disk escape into the halo. The recent detection of the Magellanic Stream in optical line emission at the CTIO 4 m and the AAT 3·9 m telescopes may now provide the strongest evidence that at least some of the radiation escapes the disk completely. We present a simple model to demonstrate that, while the distance to the Magellanic Stream is uncertain, the observed emission measures (εm ≈ 0·5 – 1 cm−6 pc) are most plausibly explained by photoionisation due to hot, young stars. This model requires that the mean Lyman-limit opacity perpendicular to the disk is τLL ≈ 3, and the covering fraction of the resolved clouds is close to unity. Alternative sources (e.g. shock, halo, LMC or metagalactic radiation) contribute negligible ionising flux.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1997

References

Bland-Hawthorn, J. 1997, PASA, 14, 64 CrossRefGoogle Scholar
Bland-Hawthorn, J., & Maloney, P. R. 1997, ApJ, submittedGoogle Scholar
Burton, W. B. 1988, in Galactic and Extragalactic Astronomy, ed. G. L. Verschuur & K. Kellerman (Dordrecht: Reidel), p. 295 CrossRefGoogle Scholar
de Geus, E. J., Vogel, S. M., Digel, S. W., & Gruendl, R. A. 1993, ApJ, 413, 97 Google Scholar
Domgorgen, H., & Mathis, J.S. 1994, ApJ, 428, 647 CrossRefGoogle Scholar
Dove, J., & Shull, M. 1994, ApJ, 430, 222 Google Scholar
Feast, M. W. 1988, ASP Conf Ser. 4, ed. S. van den Bergh k C. Pritchet (San Francisco: ASP), p. 9 Google Scholar
Feast, M. W., & Walker, A. R. 1987, ARA&A, 25, 345 Google Scholar
Ferguson, A. M. N., Wyse, R. F. G., Gallagher, J. S., & Hunter, D. A. 1996, AJ, 111, 2265 CrossRefGoogle Scholar
Fujimoto, M., & Sofue, Y. 1976, A&A, 47, 263 Google Scholar
Gardiner, L. T., Sawa, T., & Fujimoto, M. 1994, MNRAS, 266, 567 Google Scholar
Hogan, C. J., & Weymann, R. J. 1987, MNRAS, 225, 1P Google Scholar
Hoopes, C. G., Walterbos, R. A. M., & Greenawalt, B. E. 1996, AJ, 112, 1429 Google Scholar
Kent, S. M., Dame, T. M., & Fazio, G. G. 1991, ApJ, 378, 131 CrossRefGoogle Scholar
Leitherer, C., & Heckman, T. M. 1995, ApJS, 96, 9 CrossRefGoogle Scholar
Lin, D. N. C., Jones, B. F., & Klemola, A. R. 1995, ApJ, 439, 652 CrossRefGoogle Scholar
Mathewson, D. S., Cleary, J. D., & Murray, M. N. 1974, ApJ, 190, 291 CrossRefGoogle Scholar
Mathewson, D. S., & Ford, V. L. 1984, in Structure and Evolution of the Magellanic Clouds, IAU Symp., 108, 125 Google Scholar
Miller, W. W., & Cox, D. P. 1993, ApJ, 417, 579 CrossRefGoogle Scholar
Moore, B., & Davis, M. 1994, MNRAS, 270, 209 Google Scholar
Reid, M. 1993, ARA&A, 31, 345 Google Scholar
Reynolds, R. J. 1990, in Galactic and Extragalactic Background Radiation, ed. S. Bowyer & C. Leinert (Dordrecht: Kluwer), p. 157 Google Scholar
Vacca, W. D., Garmany, C. D., & Shull, J. M. 1996, ApJ, 460, 914 Google Scholar
Weiner, B. J., & Williams, T. B. 1996, AJ, 111, 1156 Google Scholar