Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T16:37:59.149Z Has data issue: false hasContentIssue false

Gravitational Lensing and Modified Newtonian Dynamics

Published online by Cambridge University Press:  05 March 2013

Daniel J. Mortlock
Affiliation:
Astrophysics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom; mortlock@ast.cam.ac.uk Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, United Kingdom
Edwin L. Turner
Affiliation:
Princeton University Observatory, Peyton Hall, Princeton, NJ 08544, U.S.A.; elt@astro.princeton.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gravitational lensing is most often used as a tool to investigate the distribution of (dark) matter in the universe, but, if the mass distribution is known a priori, it becomes, at least in principle, a powerful probe of gravity itself. Lensing observations are a more powerful tool than dynamical measurements because they allow measurements of the gravitational field far away from visible matter. For example, modified Newtonian dynamics (MOND) has no relativistic extension, and so makes no firm lensing predictions, but galaxy–galaxy lensing data can be used to empirically constrain the deflection law of a MONDian point-mass. The implied MONDian lensing formalism is consistent with general relativity, in so far as the deflection experienced by a photon is twice that experienced by a massive particle moving at the speed of light. With the deflection law in place and no invisible matter, MOND can be tested wherever lensing is observed.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Beckenstein, J., & Milgrom, M. 1984, ApJ, 286, 7 CrossRefGoogle Scholar
Brainerd, T. G., Blandford, R. D., & Smail, I. S. 1996, ApJ, 466, 623 CrossRefGoogle Scholar
Fischer, P., et al. 2000, AJ, 120, 1198 CrossRefGoogle Scholar
Garnavich, P. M., Loeb, A., & Stanek, K. Z. 2000, ApJ, 544, L11 CrossRefGoogle Scholar
McGaugh, S. S. 2000, ApJ, 541, L33 CrossRefGoogle Scholar
McGaugh, S. S., & de Blok, W. J. G. 1998, ApJ, 499, 66 CrossRefGoogle Scholar
Milgrom, M. 1983, ApJ, 270, 365 CrossRefGoogle Scholar
Mortlock, D. J., & Turner, E. L. 2001a, MNRAS, in pressGoogle Scholar
Mortlock, D. J., & Turner, E. L. 2001b, MNRAS, in pressGoogle Scholar
Natarajan, P., & Refregier, A. 2000, ApJ, 538, L113 CrossRefGoogle Scholar
Qin, B., Wu, X. P., & Zou, Z. L. 1995, A&A, 296, 264 Google Scholar
Tadros, H., Warren, S. J., & Hewett, P. C. 2001, in Cosmological Physics with Gravitational Lensing, ed. J.-P. Kneib, Y. Mellier, M. Moniez, & J. Tran Thanh Van (Paris: Edition Frontiers), in pressGoogle Scholar
Taylor, J. H., Wolszczan, A., Damour, T., & Weisberg, J. M. 1992, Nature, 355, 132 CrossRefGoogle Scholar
Trimble, V. 1987, ARA&A, 25, 425 Google Scholar
Walker, M. A. 1999, MNRAS, 306, 504 CrossRefGoogle Scholar
Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381 CrossRefGoogle Scholar