Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T06:51:00.070Z Has data issue: false hasContentIssue false

The ‘High Velocity Cloud’ Origin of the Magellanic System

Published online by Cambridge University Press:  25 April 2016

D. S. Mathewson
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University
S. R. Wayte
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University
V. L. Ford
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University
K. Ruan
Affiliation:
Mount Stromlo and Siding Spring Observatories, The Australian National University

Abstract

It is believed that the splitting of the SMC into two fragments and the production of the Inter-Cloud gas and the Magellanic Stream occurred in the one event 4 × 108 years ago. This event was a collision between the LMC and SMC. This time is too short for the Stream to be tidal, or be the result of stripping of the Inter-Cloud gas by a diffuse gaseous halo. It is proposed that the clouds in the Stream are the results of collisions between the Inter-Cloud gas and HVCs in the Galactic halo. A model of this process accounts for all of the observational features of the Stream. Observations of HVCs in the path of the Magellanic Clouds are used to predict the development of the Stream. The HVCs in our halo are thought to be a result of a collision of a galaxy with our Galaxy 6 × 109 years ago.

Type
Theoretical
Copyright
Copyright © Astronomical Society of Australia 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bregman, J. M., 1979, Astrophys. J., 229, 514.CrossRefGoogle Scholar
Brück, M. T. and Hawkins, M. R. S., 1983, Astron. Astrophys., 124, 216.Google Scholar
Feitzinger, J. V., Isserstedt, J. and Schmidt-Kaler, Th., 1977, Astron. Astrophys., 57, 265.Google Scholar
Kunkel, W. E., 1979, Astrophys. J., 228, 718.Google Scholar
Mathewson, D. S., 1985, Proc. Astron. Soc. Ausi., 6, 104.Google Scholar
Mathewson, D. S., Ford, V. L., Schwarz, M. P. and Murray, J. D., 1979, ‘The Large Scale Characteristics of the Galaxy’, IAU Symp. No. 84, ed. Burton, W. B.,(Dordrecht: Reidel), p. 547.Google Scholar
Mathewson, D. S., Ford, V. L., and Visvanathan, N., 1986, Astrophys. J., 301, 664.Google Scholar
Mathewson, D. S., Schwarz, M. P., and Murray, J. D., 1977, Astrophys. J. Lett., 217, L5.Google Scholar
Meatheringham, S. J. and Dopita, M. A., 1986, Proc. Astron. Soc. Aust., 6, 464.CrossRefGoogle Scholar
Meurer, G. R., Bicknell, G. V., and Gingold, R. A., 1985, Proc. Astron. Soc. Aust., 6, 195.CrossRefGoogle Scholar
Mirabel, I. F., Cohen, R. J., and Davies, R. D., 1979, Mon. Not. R. Astron. Soc., 186, 433.CrossRefGoogle Scholar
Murai, T., and Fujimoto, M., 1980, Publ. Astron. Soc. Japan, 32, 581.Google Scholar
Songalia, A., 1981, Astrophys. J., 248, 956.Google Scholar
Songalia, A., York, D. G., Cowie, L. L., and Blades, J. C, 1985, Astrophys. J. Lett., 293, L15.Google Scholar
Toomre, A., and Toomre, J., 1972, Astrophys. J., 178, 623.Google Scholar
Tremaine, S. D., 1976, Astrophys. J., 203, 72.Google Scholar