Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:11:09.440Z Has data issue: false hasContentIssue false

Identification of Two z ~ 3·8 QSOs in a Deep CCD Survey

Published online by Cambridge University Press:  05 March 2013

Ian Smail*
Affiliation:
School of Physics, University of New South Wales, NSW 2052, Australia Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
Alastair C. Edge
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
Richard S. Ellis
Affiliation:
Institute of Astronomy, Madingley Rd, Cambridge, CB3 0 HA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the identifications of two z ~ 3·8 quasars from a deep UBI imaging survey with the Palomar 5·1 m Telescope. The survey covers an area of 0·25 degree2 around a sample of ten z =0·2–0·3 luminous X-ray clusters. The QSOs were identified on the basis of their stellar morphologies, relatively blue optical and very red UV–optical colours. The two objects are Q 1322+5034, with total magnitudes of B =20·8, I =18·3 and (U–B) > 4·7, and Q 1722+3211, which has total magnitudes of B =21·8, I =19·7 and (U–B) > 3·2. Subsequent spectroscopic observations with the 4·2 m William Herschel Telescope have confirmed the identity of these two sources as QSOs at z =3·82 and z =3·73 respectively. Our spectroscopic observations identify a damped Lyman-α absorber in the spectrum of Q 1322+5034 at z =3·439, as well as a second absorption system at z =2·700, which may be either a single very high column density, damped Lyman-α system, or more likely a blend of a number of high column-density absorbers spread over a distance of ~10 Mpc.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 Google Scholar
Carswell, R. F., Webb, J. K., Baldwin, J. A., & Atwood, B. 1987, ApJ, 319, 709 Google Scholar
Dey, A., Spinrad, H., Stern, D., Graham, J. R., & Chaffee, F. H. 1998, ApJL, 498, 93 CrossRefGoogle Scholar
Edge, A. C., Smail, I., Ellis, R. S., Blandford, R. D., Ebeling, H., Allen, S. W., et al. 1998, MNRAS, submitted (E98)Google Scholar
Hall, P. B., Osmer, P. S., Green, R. F., Porter, A. C., & Warren, S. J. 1996, ApJ, 462, 614 Google Scholar
Hu, E. M., Cowie, L. L., & McMahon, R. G. 1998, ApJL, 502, 99 Google Scholar
Kells, W., Dressler, A., Sivaramakrishna, A., Carr, D., Koch, E., Epps, H., et al. 1998, PASP, submittedGoogle Scholar
Landolt, A. U. 1992, AJ, 104, 340 CrossRefGoogle Scholar
Liske, J., & Webb, J. K. 1997, in Structure and Evolution of the IGM from QSO Absorption Lines, ed. P. Petitjean & S. Charlot (Paris: Nouvelles Frontieres)Google Scholar
Madau, P., 1995, ApJ, 441, 18 Google Scholar
Ortiz-Gil, A., Lanzetta, K. M., & Webb, J. K. 1997, in Structure and Evolution of the IGM from QSO Absorption Lines, ed. P. Petitjean & S. Charlot (Paris: Nouvelles Frontieres)Google Scholar
Shaver, P. A., Hook, I. M., Jackson, C. A., Wall, J. V., & Kellermann, K. I. 1998, in Highly Redshifted Radio Lines, ed. C. Carilli et al. (San Franscisco: ASP)Google Scholar
Smail, I., Edge, A. C., Ellis, R. S., & Blandford, R. D. 1998, MNRAS, 293, 124 (S98)Google Scholar
Smith, J. D., Djorgovski, S. G., Thompson, D., Brisken, W. F., Neugebauer, G., Matthew, K., et al. 1994, AJ, 108, 1147 Google Scholar
White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479 Google Scholar