Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-17T15:17:45.309Z Has data issue: false hasContentIssue false

III Zw 2: Evolution of a Radio Galaxy in a Nutshell

Published online by Cambridge University Press:  05 March 2013

A. Brunthaler
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany. brunthal@mpifr-bonn.mpg.de
H. Falcke
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany. brunthal@mpifr-bonn.mpg.de
G. C. Bower
Affiliation:
RAL, University of California at Berkeley, 601 Campbell Hall, CA 94720, USA.
M. F. Aller
Affiliation:
University of Michigan, Astronomy Department, Ann Arbor, MI 48109-1090, USA.
H. D. Aller
Affiliation:
University of Michigan, Astronomy Department, Ann Arbor, MI 48109-1090, USA.
H. Teräsranta
Affiliation:
Metsähovi Radio Observatory, Metsähovintie, 02540 Kylmälä, Finland.
T. P. Krichbaum
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany. brunthal@mpifr-bonn.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

III Zw 2 shows dramatic radio outbursts roughly every five years. Here we present the light curves and VLBA observations of the latest flare with an excellent time sampling. We have detected superluminal motion with a lower limit for the apparent expansion speed of 1.25±0.09 c at 43 GHz. Spectral and spatial evolution are closely linked and the evolution of III Zw 2 in a turnover frequency vs. linear size diagram is similar to the correlation for GPS and CSS sources. Before and after this rapid expansion we observe a period of virtually no expansion. However, at 15 GHz III Zw 2 shows a constant slow expansion (∼0.6 c). The difference is qualitatively explained by optical depth effects in an ‘inflating-balloon model’, describing the evolution of radio lobes on an ultra-compact scale. The stop-and-go behaviour could be explained by a jet interacting with a molecular cloud or the molecular torus.

Type
GPS/CSS Workshop
Copyright
Copyright © Astronomical Society of Australia 2003

References

Aller, H. D., Aller, M. F., Latimer, G. E., & Hodge, R. E. 1985, ApJS, 59, 513 Google Scholar
Arp, H. 1968, ApJ, 152, 1101 Google Scholar
Brunthaler, A., Falcke, A., Bower, G. C., Aller, M. F., Aller, H. D., Teräsranta, H., Lobanov, A. P., Krichbaum, T. P., & Patnaik, A. R. 2000, A&A, 357, L45 Google Scholar
Falcke, H., Bower, G. C., Lobanov, A. P., Krichbaum, T. P., Patnaik, A. R., Aller, M. F., Aller, H. D., Teräsranta, H., Wright, M. C. H., & Sandell, G. 1999, ApJ, 514, L17 Google Scholar
Falcke, H., Patnaik, A. R., & Sherwood, W. 1996, ApJ, 473, L13 Google Scholar
Kadler, M., Ros, E., Kerp, E., Lobanov, A. P., Falcke, H., & Zensus, J. A. 2002, in Proceedings of the 6th European VLBI Network Symposium, Ros, E., Porcas, R. W., Lobanov, A., Zensus, J. A. (eds.), (Bonn, Germany), 167170 Google Scholar
Kameno, S., Sawada-Satoh, S., Inoue, M., Shen, Z., & Wajima, K. 2001 PASJ, 53, 169 CrossRefGoogle Scholar
Marecki, A., Barthel, P. D., Polatidis, A., & Owsianik, I. 2003, PASA, 20, 16 Google Scholar
Miller, P., Rawlings, S., & Saunders, R. 1993, MNRAS, 263, 425 Google Scholar
O'Dea, C. P. & Baum, S. A. 1997, AJ, 113, 148 Google Scholar
Schmidt, M. & Green, R. F. 1983, ApJ, 269, 352 CrossRefGoogle Scholar
Unger, S. W., Lawrence, A., Wilson, A. S., Elvis, M., & Wright, A. E. 1987, MNRAS, 228, 521 Google Scholar