Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T02:42:20.840Z Has data issue: false hasContentIssue false

Induced Three-wave Interactions in Eclipsing Pulsars

Published online by Cambridge University Press:  25 April 2016

Qinghuan Luo
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia. luo@physics.usyd.edu.au
D. B. Melrose
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia. luo@physics.usyd.edu.au

Abstract

Three-wave interactions involving two high-frequency waves (in the same mode) and a low-frequency wave are discussed and applied to pulsar eclipses. When the magnetic field is taken into account, the low-frequency waves can be the ω-mode (the low-frequency branch of the ordinary mode) or the z-mode (the low-frequency branch of the extraordinary mode). It is shown that in the cold plasma approximation, effective growth of the low-frequency waves due to an anisotropic photon beam can occur only for z-mode waves near the resonance frequency. In the application to pulsar eclipses, the cold plasma approximation may not be adequate and we suggest that when thermal effects are included, three-wave interaction involving low-frequency cyclotron waves (e.g. Bernstein modes) is a plausible candidate for pulsar eclipses

Type
Gallactic and Stellar
Copyright
Copyright © Astronomical Society of Australia 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, I.B. 1958, Phys. Rev., 109, 10 CrossRefGoogle Scholar
Cheng, A. F. 1989, ApJ, 339, 291 CrossRefGoogle Scholar
Eichler, D. 1991, ApJ, 370, L27 CrossRefGoogle Scholar
Emmering, R. T., & London, R. A. 1990, ApJ, 336, 589 CrossRefGoogle Scholar
Fruchter, A. S., Stinebring, D. R., & Taylor, J. H. 1988a, Nature, 333, 237 CrossRefGoogle Scholar
Fruchter, A. S., Gunn, J. E., Lauer, T. R., & Dressler, A. 1988b, Nature, 334, 686 CrossRefGoogle Scholar
Fruchter, A. S., Berman, G., Bower, G., Convery, M., Goss, W. M., Hankins, T. H., Klein, J. R., Nice, D. J., Ryba, M. F., Stinebring, D. R., Taylor, J. H., Thorsett, S. E., & Weisberg, J. M. 1990, ApJ, 351, 642 CrossRefGoogle Scholar
Gedalin, M., & Eichler, D. 1993, ApJ, 406, 629 CrossRefGoogle Scholar
Harding, A. K., & Gaisser, T. K. 1990, ApJ, 358, 561 CrossRefGoogle Scholar
Lominadze, D. G. 1981, Cyclotron Waves in Plasma (Oxford: Pergamon)Google Scholar
Luo, Q., & Melrose, D. B. 1994, Solar Phys., 154, 187 CrossRefGoogle Scholar
Lyne, A. G., Manchester, R. N., D’Amico, N., Staveley-Smith, L., Johnston, S., Lim, J., Fruchter, A. S., Goss, W. M., & Frail, D. 1990, Nature, 347, 650 CrossRefGoogle Scholar
Manchester, R. N., & Taylor, J. H. 1977, Pulsars (Pulsars Francisco: W. H. Freeman)Google Scholar
Melrose, D. B. 1986, Instabilities in Space and Laboratory Plasmas (Cambridge: Cambridge Univ. Press)CrossRefGoogle Scholar
Melrose, D. B. 1987, Aust. J. Phys., 40, 139 CrossRefGoogle Scholar
Melrose, D. B. 1994, J. Plasma Phys., 51, 13 CrossRefGoogle Scholar
Phinney, E. S., Evans, C. R., Blandford, R., & Kulkami, S. R. 1988, Nature, 333, 832 CrossRefGoogle Scholar
Rasio, F. A., Shapiro, S. L., & Teukolsky, S. A. 1989, ApJ, 342, 934 CrossRefGoogle Scholar
Rasio, F. A., Shapiro, S. L., & Teukolsky, S. A. 1991, A&A, 241, L25 Google Scholar
Thompson, C., Blandford, R. D., Evans Charles, R., &Phinney, E. S. 1994, ApJ, 422, 304 CrossRefGoogle Scholar
Tsytovich, V. N. 1970, Nonlinear Effects in Plasma (New York: Plenum)Google Scholar
Wasserman, I., & Cordes, J. M. 1988, ApJ, 333, L91 CrossRefGoogle Scholar