Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T20:25:17.158Z Has data issue: false hasContentIssue false

Investigating the Halo of the LMC

Published online by Cambridge University Press:  25 April 2016

Shaun M. G. Hughes
Affiliation:
Anglo-Australian Observatory, Private Bag, Coonabarabran, NSW 2857
Peter R. Wood
Affiliation:
Mount Stromlo & Siding Spring Observatories, Australian National University, Private Bag, Weston, ACT 2611
Neill Reid
Affiliation:
California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract

Recent results have shown that Long-Period Variables (LPVs) with periods in the range 100 to 250 days have ages ~ 10 Gyr. We have studied the kinematics of a sample of such variables in the Large Magellanic Cloud (LMC). A comparison with the kinematics of other populations (H I gas, CO molecular clouds, planetary nebulae, CH stars and old clusters) indicates that all populations younger than the old LPVs are dominated by a single common rotating disk, with the kinematics of the old LPVs being the first to indicate the presence in the LMC of a spheroidal population, with little or no rotation and a velocity dispersion ~ 6 times larger than that of the H I gas.

Type
Extragalactic
Copyright
Copyright © Astronomical Society of Australia 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bessell, M. S., Freeman, K.C. and Wood, P. R., 1987, Astrophys. J., 310, 710.Google Scholar
Cohen, R. S., Dame, T. M., Garay, G., Montani, J., Rubio, M. and Thaddeus, P., 1988, Astrophys. J. (Letters), 331, L95.CrossRefGoogle Scholar
de Vaucouleurs, G. and Freeman, K.C., 1973, Vistas in Astronomy, 14, 163.CrossRefGoogle Scholar
Elson, R. A. W. and Fall, S. M., 1988, Astron. J., 96, 1383.CrossRefGoogle Scholar
Feast, M. W., 1963, Mon. Not. R. Astron. Soc., 125, 27.Google Scholar
Feast, M. W., 1984, Mon. Not. R. Astron. Soc., 211, 51P.CrossRefGoogle Scholar
Feitzinger, J. V., 1980, Space Science Reviews, 27, 35.Google Scholar
Feitzinger, J. V., Isserstedt, J. and Schmidt-Kaler, Th., 1977, Astron. Astrophys., 57, 265.Google Scholar
Freeman, K. C, Illingworth, G. and Oemler, A., 1983, Astrophys. J., 272, 488.CrossRefGoogle Scholar
Gilmore, G., Wyse, R. F. G. and Kuijken, K., 1989, Ann. Rev. Astron. Astrophys., 27.CrossRefGoogle Scholar
Hartwick, F. D. A. and Cowley, A. P., 1988, Astrophys. J., 334, 135.Google Scholar
Hughes, S. M. G., 1989, Astron. J., 97, 1634.Google Scholar
Hughes, S. M.G and Wood, P. R. W., 1990, Astron. J., in press.Google Scholar
James, F. and Roos, M., 1975, Computer Physics Communications, 10, 343.Google Scholar
Kormendy, J. and Illingworth, G., 1982, Astrophys. J., 256, 460.CrossRefGoogle Scholar
Meatheringham, S. J., Dopita, M. A., Ford, H. C. and Webster, B. L., 1988, Astrophys. J., 327, 651.Google Scholar
Reid, N., Glass, I. S. and Catchpole, R. M., 1988, Mon. Not. R. Astron. Soc., 232, 53.CrossRefGoogle Scholar
Richer, H.B., Ovenden, M. W., Joslin, G. D., Westerlund, B. E., Olander, N., 1985, in Cool Stars with Excesses of Heavy Elements, eds. Jascheck, M., Keenan, P. C. (Dordrecht: Reidel), p. 167.Google Scholar
Rohlfs, A., Kreitschmann, J., Siegman, B.C. and Feitzinger, J. V., 1984, Astron. Astrophys., 137, 343.Google Scholar
Sommer-Larsen, J. and Christensen, P. R., 1989, Mon. Not. R. Astron. Soc., 239, 441.Google Scholar
Tonry, J. and Davis, M., 1979, Astron. J., 84, 1511.Google Scholar
Widen, R., 1977, Astron. Astrophys., 60, 263.Google Scholar
Wood, P. R., Bessell, M. S. and Fox, M. W., 1983, Astrophys. J., 272, 99.CrossRefGoogle Scholar
Wood, P. R., Bessell, M. S. and Paltoglou, G., 1985, Astrophys. J., 290, 477.Google Scholar