Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:31:28.995Z Has data issue: false hasContentIssue false

Low Luminosity Galaxies

Published online by Cambridge University Press:  05 March 2013

J. I. Davies*
Affiliation:
School of Physics Astronomy, Cardiff University, Cardiff CF24 3YB, UK
S. Sabatini
Affiliation:
School of Physics Astronomy, Cardiff University, Cardiff CF24 3YB, UK
S. Roberts
Affiliation:
School of Physics Astronomy, Cardiff University, Cardiff CF24 3YB, UK
*
BCorresponding author. Email: jonathan.davies@astro.cf.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low luminosity (dwarf) galaxies play a crucial role in our current theories of galaxy and large scale structure formation. In the hierarchical picture they are the building blocks from which other structures form. These theories in their basic form overpredict the numbers of small dark matter halos (dwarf galaxies?) unless some form of star formation supression is invoked. In this paper we describe observations of dwarf galaxies in a range of different environments. We find that there are far too few dwarf galaxies in low density environments to be compatible with the theories. These observations are not consistent with an environment-independent mechanism suppressing dwarf galaxy formation. It is also not clear how these mechanisms can supress star formation if dwarf galaxies have large mass-to-light ratios (≈100). Either the whole idea of hierarchical galaxy formation has to be rejected or other environmentally dependent physical processes have to be invoked. We suggest that small, gas-rich dI galaxies have their evolution rapidly advanced as they move into the dense cluster environment.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Babul, A., & Rees, M. J. 1992, MNRAS, 255, 346 CrossRefGoogle Scholar
Binggeli, B., Sandage, A., & Tammann, G. 1985, AJ, 90, 1681 Google Scholar
Blanton, M. R., et al. 2001, AJ, 121, 2358 CrossRefGoogle Scholar
Cavaliere, A., & Fusco-Femiano, R. 1976, A&A, 49, 137 Google Scholar
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168 Google Scholar
Conselice, J. C., Gallagher, J. S., & Wyse, R. F. G. 2001, ApJ, 559 Google Scholar
Conselice, J. C., O'Neil, K., Gallagher, J. S., & Wyse, R. F. G. 2003, ApJ, 591, 167 Google Scholar
Davies, J., & Phillipps, S. 1989, ApSS, 157, 291 Google Scholar
Davies, J., et al. 2004, MNRAS, 349, 922 Google Scholar
Dekel, A., & Silk, J. 1986, ApJ, 303, 39 Google Scholar
Drinkwater, M. J., et al., 2004, PASA, 21, 375 Google Scholar
Driver, S. P. 1999, ApJ, 526, L69 Google Scholar
Gunn, J. E., & Gott, J. R. 1972, ApJ, 176, 1 Google Scholar
Jerjen, H., Binggeli, B., & Barazza, F. 2003, AJ, in press (astro-ph/0310779)Google Scholar
Kambas, A., Davies, J. I., Smith, R. M., Bianchi, S., & Haynes, J. A. 2000, MNRAS, 120, 1316 Google Scholar
Kleyna, J., Wilkinson, M. I., Evans, N. W., Gilmore, G., & Frayn, C. 2002, MNRAS, 330, 792 Google Scholar
Leitherer, C., & Heckman, T. M. 1995, ApJ, 96, 9 Google Scholar
Liske, J., Lemon, D. J., Driver, S. P., Cross, N. J. G., & Couch, W. J. 2003, MNRAS, 344, 307 CrossRefGoogle Scholar
Mac Low, M. M., & Ferrara, A. 1999, ApJ, 513, 142 CrossRefGoogle Scholar
Mathis, H., Lemson, G., Springel, V., Kauffmann, G., White, S. D. M., Eldar, A., & Dekel, A. 2002, MNRAS, 333, 739 Google Scholar
Milne, M. L., & Pritchet, C. J. 2002, AAS, 201, 4211 Google Scholar
Minchin, R., et al. 2003, MNRAS, 346, 787 Google Scholar
Moore, B., Lake, G., Quinn, T., & Stadel, J. 1999, MNRAS, 304, 465 Google Scholar
Norberg, P., et al. 2002, MNRAS, 336, 907 Google Scholar
Okazaki, T., & Taniguchi, Y. 2000, ApJ, 543, 149 CrossRefGoogle Scholar
Reed, B. 1985, PASP, 97, 120 Google Scholar
Roberts, S., Davies, J., Sabatini, S., van Driel, W., O'Neil, K., Baes, M., Linder, S., Smith, R., & Evans, R. 2004, MNRAS, submittedGoogle Scholar
Sabatini, S., Davies, J., Scaramella, R., Smith, R., Baes, M., Linder, S. M., Roberts, S., & Testa, V. 2003, MNRAS, 341, 981 Google Scholar
Sabatini, S., et al. 2004, MNRAS, submittedGoogle Scholar
Spergel, D. N., et al. 2003, ApJSS, 148, 161 CrossRefGoogle Scholar
Trentham, N., Tully, B., & Verheijen, M. A. W. 2001, MNRAS, 325, 385 CrossRefGoogle Scholar
Trentham, N., & Tully, R. B. 2002, MNRAS, 335, 3 Google Scholar
Tully, B. R., Somerville, R. S., Trentham, N., & Verheijen, M. A. W. 2002, ApJ, 569, 573 CrossRefGoogle Scholar
Tully, B. R., Verheijen, M. A. W., Pierce, M. J., Huang, J. S., & Wainscoat, R. J. 1996, AJ, 112, 2471 Google Scholar
Vollmer, B., Cayatte, V., Balkowski, C., & Duschl, W. J. 2001, ApJ, 561, 708 Google Scholar
Young, A., Wilson, A., & Mundell, C. 2002, ApJ, 579, 560 Google Scholar
Zwaan, M. A., et al. 2003, AJ, 125, 2842 Google Scholar