Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T05:47:31.670Z Has data issue: false hasContentIssue false

Magnetic Braking in Single and Binary Stars

Published online by Cambridge University Press:  25 April 2016

Jianke Li*
Affiliation:
Research Centre for Theoretical Astrophysics, School of Physics, Sydney University, NSW 2006

Abstract

We discuss the basic concept and the problems of magnetic braking via magnetically controlled hot plasmas in late-type stars. We investigate the magnetic braking process in special magnetic field structures in both single stars and binaries. We find that in single solar-type stars, the high-order component of the observed complicated fields can account for the braking rate of the present Sun. However, this component cannot account for the braking rate of young solar-type stars, even though this field is much stronger than the simple (monopolar or dipolar) field usually adopted in braking models. For magnetically interacting cataclysmic binaries, the magnetic fields of the white dwarf greatly change the magnetic fields on the main-sequence secondaries. In particular, in synchronously rotating magnetic CVs (AM Herculis systems) magnetic braking may even turn off if the white dwarf magnetic field is sufficiently strong. These results suggest that the magnetic field structure has a crucial effect on magnetic braking.

Type
Galactic and Stellar
Copyright
Copyright © Astronomical Society of Australia 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Collier Cameron, A. and Li, J., 1994, in preparation.Google Scholar
Collier Cameron, A., Li, J. and Mestel, L., 1991, In Angular Momentum Evolution of Young Stars, Catalano, S., and Stauffer, J. R. (eds), NATO AST Series, Kluwer, Dordrecht, p. 297.Google Scholar
Endal, A. S., and Sofia, S., 1981, ApJ, 243, 625.Google Scholar
Jordan, C. and Montesinos, B., 1991, MNRAS, 252, 21p.Google Scholar
Kraft, R., 1967, In Spectroscopic Astrophysics, Herbig, G., (ed.), Univ. California Press, Berkeley, p. 385.Google Scholar
Li, J., 1992, D.Phil, thesis, University of Sussex, UK.Google Scholar
Li, J. and Collier Cameron, A., 1993, MNRAS, 261, 766.Google Scholar
Li, J., Wu, K. and Wickramasinghe, D. T., 1994, MNRAS, in press.Google Scholar
Mestel, L., 1968, MNRAS, 138, 359.Google Scholar
Mestel, L. and Spruit, H. C, 1987, MNRAS, 226, 57.CrossRefGoogle Scholar
Mestel, L. and Weiss, N. O., 1987, MNRAS, 226, 123.Google Scholar
Noyes, R. W., Hartmann, L., Baliunas, S. L., Duncan, D. K. and Vaughan, A. H., 1984, ApJ, 297, 763.CrossRefGoogle Scholar
Pizzo, V., Schwenn, R., Marsch, E., Rosenbauer, H., Mùhlháuser, K. H. and Neubauer, F. M., 1983, ApJ, 271, 335.Google Scholar
Priest, E. R., 1984, Solar Magnetohydrodynamics, Reidel, Dordrecht, p. 235.Google Scholar
Roxburgh, I. W., 1983, In Solar and Magnetic Fields: Origins and Coronal Effects, IAU Symposium No. 102, Stenflo, J. O. (ed.), p. 449.Google Scholar
Saar, S. H., 1986, ApJ, 324, 441,CrossRefGoogle Scholar
Schatzman, E., 1962, Ann. Astrophys., 25, 1.Google Scholar
Skumanich, A., 1972, ApJ, 171, 565.Google Scholar
Soderblom, D. R., Stauffer, J. R., Hudon, J. D. and Jones, B. F., 1993, ApJS, 85, 315.Google Scholar
Stauffer, J. R. and Hartmann, L. W., 1987, ApJ, 318, 337.Google Scholar
Taam, R. E. and Spruit, H. C., 1989, ApJ, 345, 972.Google Scholar
Vilhu, O., 1984, A & A, 133, 117.Google Scholar
Weber, E. J. and Davis, L., 1967, ApJ, 148, 217.Google Scholar
Wickramasinghe, D. T. and Wu, K. 1994, MNRAS, in press.Google Scholar
Withbroe, G. L., Feldman, W. C. and Ahluwalia, H. S., 1991, In Solar Interior and Atmosphere, Cox, A. N. et al. (eds), University of Arizona Press, Tucson, p. 1087.Google Scholar