Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T07:54:49.815Z Has data issue: false hasContentIssue false

Medium-Resolution s-process Element Survey of 47 Tuc Giant Stars

Published online by Cambridge University Press:  02 January 2013

C. C. Worley*
Affiliation:
Observatoire de la Côte d'Azur, B.P. 4229, Nice, Cedex 04, France
P. L. Cottrell
Affiliation:
The Beatrice Tinsley Institute, Department of Physics & Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Max Planck Institut für Astrophysik, Karl-Schwarzschild Str 1, 85741, Garching, Germany
*
DCorresponding author. Email: cworley@oca.eu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Medium-resolution (R ∼ 6500) spectra of 97 giant stars in the globu lar cluster 47 Tucanæ (47 Tuc) have been used to derive the C- and N-abundance sensitive index, δC, and to infer abundances of several key elements (Fe, Na, Si, Ca, Zr and Ba) for a sample of 13 of these stars with similar effective temperature ( Teff) and surface gravity (log g). These stars have stellar properties similar to the well-studied 47 Tuc giant star, Lee 2525, but with a range of CN excess (δC) values which are a measure of the CN abundance. The δC index is shown to be correlated with Na abundance for this sample, confirming previous studies. Fe, Ca, Si and the light and heavy s-process (slow neut ron capture) elements, Zr and Ba, respectively, have a narrow range of abundance values, indicative of a homogeneous abundance within this population of stars. The constancy of many element abundances (Fe, Si, Ca, Zr, Ba) and the δC and Na abundance correlation could imply that there has been a second era of star formation in this cluster that has revealed the products of CNO-cycle burning via hot bottom burning (depletion of C, enhancement of N and the production of Na for high δC population). But there is no overall metallicity change across the range of δC values at a given position in the HR diagram as has been seen in some other globular clusters.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2012

References

Alonso, A., Arribas, S. & Martínez-Roger, C., 1999, A&AS, 140, 261Google Scholar
Briley, M. M., Harbeck, D., Smith, G. H. & Grebel, E. K., 2004, AJ, 127, 1588CrossRefGoogle Scholar
Brown, J. A. & Wallerstein, G., 1992, AJ, 104, 1818CrossRefGoogle Scholar
Busso, M., Gallino, R., Lambert, D. L., Travaglio, C. & Smith, V. V., 2001, ApJ, 557, 802CrossRefGoogle Scholar
Campbell, S. W., Lattanzio, J. C., Elliott, L. M., 2006, ArXiv Astrophysics e-printsGoogle Scholar
Campbell, S. W., Yong, D., Wylie-de Boer, E. C., Stancliffe, R. J., Lattanzio, J. C., Angelou, G. C., Grundahl, F. & Sneden, C., 2010, MemSaIt, 81, 1004Google Scholar
Cannon, R. D., Croke, B. F. W., Bell, R. A., Hesser, J. E. & Stathakis, R. A., 1998, MNRAS, 298, 601CrossRefGoogle Scholar
Cannon, R., da Costa, G., Norris, J., Stanford, L., Croke, B., 2003, in New Horizons in Globular Cluster Astronomy Vol. 296 of the Astronomical Society of the Pacific Conference Series, Spectroscopy of Main Sequence Stars in Globular Clusters, ed. Piotto, G., Meylan, G., Djorgovski, S. G. & Riello, M., 175Google Scholar
Cottrell, P. L. & da Costa, G. S., 1981, ApJL, 245, L79CrossRefGoogle Scholar
Gratton, R., Sneden, C. & Carretta, E., 2004, ARA&A, 42, 385Google Scholar
Hinkle, K. Wallace, L., 2005, in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis Vol. 336 of Astronomical Society of the Pacific Conference Series, The Spectrum of Arcturus from the Infrared through the Ultraviolet, ed. Barnes, T. G. III & Bash, F. N., 321Google Scholar
Karakas, A. I. & Lugaro, M., 2010, PASA, 27, 227CrossRefGoogle Scholar
Lee, S. W., 1977, A&AS, 27, 381Google Scholar
Lind, K., Asplund, M., Barklem, P. S. & Belyaev, A. K., 2011, A&A, 528, A103+Google Scholar
Milone, A. P., et al. , 2011, ArXiv e-prints, 1109.0900Google Scholar
Norris, J. & Freeman, K. C., 1979, ApJL, 230, L179 (NF79)CrossRefGoogle Scholar
Paltoglou, G. Freeman, K. C. 1984, PhD Thesis, Mt. Stromlo and Siding Spring Observatories, Institute of Advanced Studies, Australian National University (PF84)Google Scholar
Reschenhofer, E., 2001, Journal of Statistics Education, 9Google Scholar
Sharp, R., et al. , 2006, in Ground-based and Airborne Instrumentation for Astronomy Vol. 6269 of Proceedings of the SPIE, Performance of AAOmega: The AAT Multi-purpose Fiber-fed Spectrograph, McLean, I. S. & Masanori, I., 62690GGoogle Scholar
Skrutskie, M. F., et al. , 2006, ApJ, 131, 1163CrossRefGoogle Scholar
Sneden, C., 1973, PhD Thesis, University of Texas at AustinGoogle Scholar
Sneden, C., Ivans, I. I. & Kraft, R. P., 2000, MemSaIt, 71, 657Google Scholar
Worley, C. C., Cottrell, P. L. & Wylie de Boer, E. C., 2008, PASA, 25, 53CrossRefGoogle Scholar
Worley, C. C., Cottrell, P. L., Freeman, K. C. & Wylie-de Boer, E. C., 2009, MNRAS, 400, 1039CrossRefGoogle Scholar
Worley, C. C., Cottrell, P. L., McDonald, I. & van Loon, J. T., 2010, MNRAS, 402, 2060CrossRefGoogle Scholar
Wylie, E. C., Cottrell, P. L., Sneden, C. A. & Lattanzio, J. C., 2006, ApJ, 649, 248CrossRefGoogle Scholar