Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T11:23:21.545Z Has data issue: false hasContentIssue false

The P(4S) + NH(3Σ) and N(4S) + PH(3Σ)reactions as sources of interstellar phosphorus nitride

Published online by Cambridge University Press:  07 March 2023

Alexandre C. R. Gomes
Affiliation:
Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG Av. Amazonas 5253, 30421-169, Belo Horizonte, Minas Gerais, Brazil
André C. Souza
Affiliation:
Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG Av. Amazonas 5253, 30421-169, Belo Horizonte, Minas Gerais, Brazil
Ahren W. Jasper
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
Breno R. L. Galvão*
Affiliation:
Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG Av. Amazonas 5253, 30421-169, Belo Horizonte, Minas Gerais, Brazil
*
Corresponding author: Breno R. L. Galvão, Email: brenogalvao@gmail.com.

Abstract

Phosphorus nitride (PN) is believed to be one of the major reservoirs of phosphorus in the interstellar medium (ISM). For this reason, understanding which reactions produce PN in space and predicting their rate coefficients is important for modelling the relative abundances of P-bearing species and clarifying the role of phosphorus in astrochemistry. In this work, we explore the potential energy surfaces of the $\textrm{P}(^4\textrm{S}) + \textrm{NH}(^3\Sigma^-)$ and $\textrm{N}(^4\textrm{S}) + \textrm{PH}(^3\Sigma^-)$ reactions and the formation of $\textrm{H}(^2\textrm{S}) + \textrm{PN}(^1\Sigma^+)$ through high accuracy ab initio calculations and the variable reaction coordinate transition state theory (VRC-TST). We found that both reactions proceed without an activation barrier and with similar rate coefficients that can be described by a modified Arrhenius equation ($k(T)=\alpha\!\left( T/300 \right)^{\beta} \exp\!{(\!-\!\gamma/T)})$ with $\alpha=0.93\times 10^{-10}\rm cm^3\,s^{-1}$, $\beta=-0.18$ and $\gamma=0.24\, \rm K$ for the $\textrm{P} + \textrm{NH} \longrightarrow \textrm{H} + \textrm{PN}$ reaction and $\alpha=0.88\times 10^{-10}\rm cm^3\,s^{-1}$, $\beta=-0.18$ and $\gamma=1.01\, \rm K$ for the $\textrm{N} + \textrm{PH} \longrightarrow \textrm{H} + \textrm{PN}$ one. Both reactions are expected to be relevant for modelling PN abundances even in the cold environments of the ISM. Given the abundance of hydrogen in space, we have also predicted rate coefficients for the destruction of PN via H + PN collisions.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, T. B., Knizia, G., & Werner, H.-J. 2007. J. Chem. Phys., 127, 221106 CrossRefGoogle Scholar
Bartlett, R. J. 1989. J. Phys. Chem., 93, 1697 CrossRefGoogle Scholar
Bartlett, R. J., Watts, J. D., Kucharski, S. A., & Noga, J. 1990. Chem. Phys. Lett., 165, 513 CrossRefGoogle Scholar
Bode, B. M., & Gordon, M. S. 1998. J. Mol. Graphics Modell., 16, 133CrossRefGoogle Scholar
Caridade, P. J. S. B., Rodrigues, S. P. J., Sousa, F., & Varandas, A. J. C. 2005. J. Phys. Chem. A, 109, 2356 CrossRefGoogle Scholar
Chantzos, J., Rivilla, V. M., Vasyunin, A., Redaelli, E., Bizzocchi, L., Fontani, F., & Caselli, P. 2020. Astron. Astrophys., 633, A54 CrossRefGoogle Scholar
de la Concepción, J. G., Puzzarini, C., Barone, V., Jiménez-Serra, I., & Roncero, O. 2021. Astrophys. J., 922, 169 CrossRefGoogle Scholar
Douglas, K. M., Gobrecht, D., & Plane, J. M. C. 2022. Mon. Not. R. Astron. Soc., 515, 99109 CrossRefGoogle Scholar
Dunning, T. H. 1989. J. Chem. Phys., 90, 1007 CrossRefGoogle Scholar
Fontani, F., van der Tak VMRivilla, F. F. S., Mininni, C., Beltrán, M. T., & Caselli, P. 2019. Mon. Not. R. Astron. Soc., 489, 4530Google Scholar
Georgievskii, Y., & Klippenstein, S. J. 2005. J. Chem. Phys., 122, 194103 Google Scholar
Georgievskii, Y., Miller, J. A., Burke, M. P., & Klippenstein, S. J. 2013. J. Phys. Chem. A., 117, 12146 Google Scholar
Goldford, J. E., Hartman, H., Smith, T. F., & Segrè, D. 2017. Cell, 168, 1126 CrossRefGoogle Scholar
Gomes, A. C. R., Spada, R. F. K., Lefloch, B., & Galvão, B. R. L. 2022. Mon. Not. R. Astron. Soc. (November). issn: 0035-8711. https://doi.org/10.1093/mnras/stac3460. eprint:https://academic.oup.com/mnras/advance-articlepdf/doi/10.1093/mnras/stac3460/47309179/stac3460.pdf Google Scholar
Guo, Q., Yang, Q., Zhu, L., Yi, C. & Xie, Y. 2005. J. Mater. Res., 20, 325 CrossRefGoogle Scholar
Hack, W., Wagner, H. Gg., & Zasypkin, A. 1994. Berichte der Bunsengesellschaft für physikalische Chemie, 98, 156Google Scholar
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. 2012. J. Cheminform., 4, 1 Google Scholar
Harding, L. B., Georgievskii, Y., & Klippenstein, S. J. 2005. J. Phys. Chem. A, 109, 4646 CrossRefGoogle Scholar
Jiménez-Serra, I., Viti, S., Quénard, D., & Holdship, J. 2018. Astrophys. J., 862, 128 Google Scholar
Kendall, R. A., Dunning, T. H., & Harrison, R. J. 1992. J. Chem. Phys., 96, 6796 CrossRefGoogle Scholar
Klippenstein, S. J. 1991. J. Chem. Phys., 94, 6469 CrossRefGoogle Scholar
Klippenstein, S. J. 1992. J. Chem. Phys., 96, 367 CrossRefGoogle Scholar
Klippenstein, S. J. 2017. Proc. Combust. Inst., 36, 77 CrossRefGoogle Scholar
Knizia, G., Adler, T. B., & Werner, H.-J. 2009. J. Chem. Phys., 130, 054104 CrossRefGoogle Scholar
Kohn, W., & Sham, L. J. 1965. Phys. Rev., 140, A1133 CrossRefGoogle Scholar
Lee, T. J. 2003. Chem. Phys. Lett., 372, 362 CrossRefGoogle Scholar
Lee, T. J., & Taylor, P. R. 1989. Int. J. Quant. Chem. Symp., 23, 199 Google Scholar
Lefloch, B., Vastel, C., Viti, S., Jiménez-Serra, I., Codella, C., Podio, L., Ceccarelli, C., Mendoza, E., Lépine, J. R. D., & Bachiller, R. 2016. Mon. Not. R. Astron. Soc., 462, 3937 Google Scholar
Leininger, M. L., Nielsen, I. M. B., Crawford, T. D., & Janssen, C. L. 2000. Chem. Phys. Lett., 328, 431 CrossRefGoogle Scholar
Maciá, E. 2005. Chem. Soc. Rev., 34, 691 CrossRefGoogle Scholar
Marchuk, A., Pucher, F. J., Karau, F. W., & Schnick, W. 2014. Angew. Chem. Int. Ed., 53, 2469Google Scholar
Martin, J. M. L., & Uzan, O. 1998. Chem. Phys. Lett., 282, 16 CrossRefGoogle Scholar
McElroy, D., Walsh, C., Markwick, A. J., Cordiner, M. A., Smith, K. & Millar, T. J. 2013. Astron. Astrophys., 550, A36 CrossRefGoogle Scholar
Millar, T. J., Bennett, A., & Herbst, E. 1987. Mon. Not. R. Astron. Soc., 229, 41 CrossRefGoogle Scholar
Miller, J. A., Branch, M. C., Mclean, W. J., Chandler, D. W., Smooke, M. D., & Kee, R. J. 1985. In Symposium (international) on combustion, 20, 673. Elsevier Google Scholar
Miller, W. B., Safron, S. A., & Herschbach, D. R. 1967. Faraday Discuss. Chem. Soc., 44, 108 CrossRefGoogle Scholar
Mota, V. C., & Varandas, A. J. C. 2007. J. Phys. Chem. A, 111, 10191 CrossRefGoogle Scholar
Mota, V. C., & Varandas, A. J. C. 2008. J. Phys. Chem. A, 112, 3768 CrossRefGoogle Scholar
Mota, V. C., Galvão, B. R. L., Coura, D. V. B., & Varandas, A. J. C. 2020. J. Phys. Chem. A, 124, 781 Google Scholar
Raghavachari, K., Trucks, G. W., & Pople, J. A., & Head-Gordon, M. 1989. Chem. Phys. Lett., 157, 479 CrossRefGoogle Scholar
Rivilla, V. M., Fontani, F., Beltrán, M. T., Vasyunin, A., Caselli, P., Martn-Pintado, J., & Cesaroni, R. 2016. Astrophys. J., 826, 161 CrossRefGoogle Scholar
Rivilla, V. M., Drozdovskaya, M. N., Altwegg, K., Caselli, P., Beltrán, M. T., Fontani, F., van der Tak, F. F. S., et al. 2020. Mon. Not. R. Astron. Soc., 492, 1180 CrossRefGoogle Scholar
Schmidt, M. W., Baldridge, K. K., Boats, J. A., Elbert, S. T., Gorgon, M. S., Jensen, J. H., Koseki, S., et al. 1993. J. Comput. Chem., 14, 1347 CrossRefGoogle Scholar
Shiozaki, T., Knizia, G., & Werner, H.-J. 2011. J. Chem. Phys., 134, 034113 CrossRefGoogle Scholar
Smith, I. W. M., Herbst, E., & Chang, Q. 2004. Mon. Not. R. Astron. Soc., 350, 323 CrossRefGoogle Scholar
Sousa-Silva, C., Seager, S., Ranjan, S., Petkowski, J. J., Zhan, Z., Hu, R., & Bains, W. 2020. Astrobiology, 20, 235 CrossRefGoogle Scholar
Souza, A. C., Silva, M. X., & Galvão, B. R. L. 2021. Mon. Not. R. Astron. Soc., 507, 1899 CrossRefGoogle Scholar
Szalay, P. G., Müller, T., Gidofalvi, G., Lischka, H., & Shepard, R.. 2012. Chem. Rev., 112, 108 CrossRefGoogle Scholar
Tenenbaum, E. D., Woolf, N. J., & Ziurys, L. M. 2007. Astrophys. J., 666, L29 CrossRefGoogle Scholar
Thorne, L. R., Anicich, V. G., Prasad, S. S., & Huntress, W. T. Jr. 1984. Astrophys. J., 280, 139 CrossRefGoogle Scholar
Turner, B. E., & Bally, J. 1987. Astrophys. J., 321, L75 CrossRefGoogle Scholar
Wakelam, V., Herbst, E., Loison, J.-C., Smith, I. W. M., Chandrasekaran, V., Pavone, B., Adams, N. G., Bacchus-Montabonel, M.-C., Bergeat, A., Béroff, K., et al. 2012. Astrophys. J. Suppl. Ser., 199, 21 CrossRefGoogle Scholar
Walch, S. P., Duchovic, R. J., & Rohlfing, C. M. 1989. J. Chem. Phys., 90, 3230 CrossRefGoogle Scholar
Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., & Schütz, M. 2012. WIREs Comput. Mol. Sci., 2, 242 CrossRefGoogle Scholar
Yamaguchi, T., Takano, S., Sakai, N., Sakai, T., Liu, S.-Y., Su, Y.-N., Hirano, N., et al. 2011. Publ. Astron. Soc. Jpn., 63, L37 CrossRefGoogle Scholar
Yang, J., Chen, B., Liu, X., Liu, W., Li, Z., Dong, J., Chen, W., Yan, W., Yao, T., Duan, X., et al. 2018. Angew. Chem. Int. Ed., 57, 9495CrossRefGoogle Scholar
Zhao, Y., & Truhlar, D. G. 2008. Theor. Chem. Acc., 120, 215 CrossRefGoogle Scholar
Ziurys, L. M. 1987. Astrophys. J., 321, L81 CrossRefGoogle Scholar
Ziurys, L. M., Schmidt, D. R., & Bernal, J. J. 2018. Astrophys. J., 856, 169CrossRefGoogle Scholar
Supplementary material: PDF

Gomes et al. supplementary material

Gomes et al. supplementary material

Download Gomes et al. supplementary material(PDF)
PDF 600 KB