Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T11:59:58.763Z Has data issue: false hasContentIssue false

Shock Geometry and Inverse Compton Emission from the Wind of a Binary Pulsar

Published online by Cambridge University Press:  05 March 2013

Lewis Ball*
Affiliation:
Research Centre for Theoretical Astrophysics, University of Sydney, NSW 2006, Australia
Jennifer Dodd
Affiliation:
Research Centre for Theoretical Astrophysics, University of Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

PSR B1259 – 63 is a 47 ms radio pulsar with a high spin-down luminosity which is in a close, highly eccentric 3·5 yr orbit about a bright stellar companion. The binary system may be a detectable source of hard ã γ-rays produced by inverse Compton scattering of photons from the B2e star SS2883 by electrons and positrons in the pulsar wind. The star provides an enormous density of optical photons in the vicinity of the pulsar, particularly at epochs near periastron. We calculate the emission from the unshocked region of the pulsar wind, assuming that it terminates at a shock where it attains pressure balance with the companion’s wind. The spectra and light curves for the inverse Compton emission from the shock-terminated wind are compared with those for an unterminated wind. If the pulsar’s wind is weaker than that from the companion star, the termination of the wind decreases the inverse Compton flux, particularly near periastron. The termination shock geometry has the effect of decreasing the asymmetry of the γ-ray light curve around periastron, which arises because of the asymmetrical variation of the scattering angle.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Ball, L., & Kirk, J. G. 2000a, Astropart. Phys., 12, 335 CrossRefGoogle Scholar
Ball, L., & Kirk, J. G. 2000b, Pulsar Astronomy – 2000 and Beyond, IAU Coll. 177, eds N. Kramer, N. Wex & R. Wielebinski, 527 Google Scholar
Ball, L., Melatos, A., Johnston, S., & Skjæraasen, O. 1999, ApJ, 541, L39 Google Scholar
Eichler, D., & Usov, V. 1993, ApJ, 402, 271 Google Scholar
Girard, T., & Willson, L. A. 1987, A&A, 183, 247 Google Scholar
Giuliani, J. L. 1982, ApJ, 256, 634 Google Scholar
Huang, R. Q., & Weigert, A. 1982, A&A, 112, 281 Google Scholar
Johnston, S., Manchester, R. N., Lyne, A. G., Bailes, M., Kaspi, V. M., Qiao, G., & D'Amico, N. 1992, ApJ, 387, L37 CrossRefGoogle Scholar
Johnston, S., Manchester, R. N., Lyne, A. G., Nicastro, L., & Spyromilio, J. 1994, MNRAS, 268, 430 Google Scholar
Johnston, S., Manchester, R. N., Lyne, A. G., D'Amico, N., Bailes, M., Gaensler, B. M., & Nicastro, L. 1996, MNRAS, 279, 1026 Google Scholar
Johnston, S., Manchester, R. N., McConnell, D., & Campbell-Wilson, D. 1999, MNRAS, 302, 277 Google Scholar
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 710 Google Scholar
Kirk, J. G., Ball, L., & Skjæraasen, O. 1999, Astropart. Phys., 10, 31 Google Scholar
Kirk, J. G., Ball, L., & Skjæraasen, O. 2000, Pulsar Astronomy – 2000 and Beyond, IAU Coll. 177, eds N. Kramer, N. Wex & R. Wielebinski, 531 Google Scholar
Melatos, A., Johnston, S., & Melrose, D. B. 1995, MNRAS, 285, 381 CrossRefGoogle Scholar
Tavani, M., & Arons, J. 1997, ApJ, 477, 439 Google Scholar
Yoshikoshi, T., et al. 1999, Astropart. Phys., 11, 267 CrossRefGoogle Scholar