Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T16:03:59.021Z Has data issue: false hasContentIssue false

The Solar Photospheric Nitrogen Abundance: Determination with 3D and 1D Model Atmospheres

Published online by Cambridge University Press:  05 March 2013

E. Maiorca*
Affiliation:
Dipartimento di Fisica, Universitá degli studi di Perugia, via Pascoli, Perugia, I-06123, Italy
E. Caffau
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; 92195 Meudon Cedex, France
P. Bonifacio
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; 92195 Meudon Cedex, France CIFIST Marie Curie Excellence Team Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34143 Trieste, Italy
M. Busso
Affiliation:
Dipartimento di Fisica, Universitá degli studi di Perugia, via Pascoli, Perugia, I-06123, Italy Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen
R. Faraggiana
Affiliation:
Istituto Nazionale di Fisica Nucleare, section of Perugia, via Pascoli, Perugia, I-06123, Italy
M. Steffen
Affiliation:
Dipartimento di Astronomia, Università degli Studi di Trieste, via G.B. Tiepolo 11, 34143 Trieste, Italy
H.-G. Ludwig
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; 92195 Meudon Cedex, France CIFIST Marie Curie Excellence Team
I. Kamp
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
*
ICorresponding author. Email: emaiorca@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new determination of the solar nitrogen abundance making use of 3D hydrodynamical modelling of the solar photosphere, which is more physically motivated than traditional static 1D models. We selected suitable atomic spectral lines, relying on equivalent width measurements already existing in the literature. For atmospheric modelling we used the co5bold 3D radiation hydrodynamics code. We investigated the influence of both deviations from local thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities (granulation effects) on the resulting abundance. We also compared several atlases of solar flux and centre-disc intensity presently available. As a result of our analysis, the photospheric solar nitrogen abundance is A(N) = 7.86 ± 0.12.

Type
Observations
Copyright
Copyright © Astronomical Society of Australia 2009

References

Allende Prieto, C., Lambert, D. L. & Asplund, M., 2001, ApJ, 556, L63 Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C. & Kiselman, D., 2004, A&A, 417, 751 Google Scholar
Asplund, M., Grevesse, N. & Sauval, A. J., 2005, ASPC, 336, 25 Google Scholar
Aufdenberg, J. P., Ludwig, H.-G. & Kervella, P., 2005, ApJ, 633, 424 Google Scholar
Basu, S. & Antia, H. M., 2008, PhR, 457, 217 Google Scholar
Biémont, E., Froese Fischer, C., Godefroid, M.,Vaeck, N. & Hibbert, A., 1990, in Proc. 3rd International Colloquium of the Royal Netherlands Academy of Arts and Sciences, Ed. Hansen J. E. (Amsterdam: North–Holland), 59 Google Scholar
Caffau, E. & Ludwig, H.-G., 2007, A&A, 467, L11 Google Scholar
Caffau, E., Bonifacio, P., Faraggiana, R., François, P., Gratton, R. G. & Barbieri, M., 2005, A&A, 441, 533 Google Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T. R., Bonifacio, P., Cayrel, R., Freytag, B. & Plez, B., 2008, A&A, 488, 1031 Google Scholar
Castelli, F., 2005, MmSAI, 8, 44 Google Scholar
Castelli, F. & Kurucz, R. L., 2003, IAUS, 210, A20 Google Scholar
Delbouille, L., Roland, G. & Neven, L., 1973, Atlas photometrique du spectre solaire de λ3000 a λ10 000 (Liege: Universite de Liege, Institut d'Astrophysique)Google Scholar
Delbouille, L., Roland, G., Brault, J. & Testerman, L., 1981, Photometric Atlas of the Solar Spectrum from 1850 to 10 000 cm−1, http://bass2000.obspm.fr/solar_spect.php Google Scholar
Drawin, H. W., 1969, ZPhy, 225, 483 Google Scholar
Freytag, B., Steffen, M. & Dorch, B., 2002, AN, 323, 213 Google Scholar
Freytag, B., Steffen, M., Wedemeyer-Böhm, S. & Ludwig, H.-G., 2003, CO5BOLD User Manual, http://www.astro.uu.se/~bf/co5bold_main.html Google Scholar
Grevesse, N., Lambert, D. L., Sauval, A. J., van Dishoeck, E. F., Farmer, C. B. & Norton, R. H., 1990, A&A, 232, 225 Google Scholar
Grevesse, N. & Sauval, A. J., 1998, SSRv, 85, 161 Google Scholar
Holweger, H., 1967, ZA, 65, 365 Google Scholar
Holweger, H. & Müller, E. A., 1974, SoPh, 39, 19 Google Scholar
Kurucz, R., 1993a, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid (Cambridge, Mass.: Smithsonian Astrophysical Observatory)Google Scholar
Kurucz, R., 1993b, SYNTHE Spectrum Synthesis Programs and Line Data (Cambridge, Mass.: Smithsonian Astrophysical Observatory)Google Scholar
Kurucz, R. L., 2005a, MSAIS, 8, 189 Google Scholar
Kurucz, R. L., 2005b, MSAIS, 8, 14 Google Scholar
Neckel, H. & Labs, D., 1984, SoPh, 90, 205 Google Scholar
Rentzsch-Holm, I., 1996, A&A, 305, 275 Google Scholar
Sbordone, L., 2005, MSAIS, 8, 61 Google Scholar
Sbordone, L., Bonifacio, P., Castelli, F. & Kurucz, R. L., 2004, MSAIS, 5, 93 Google Scholar
Steenbock, W. & Holweger, H., 1984, A&A, 130, 319 Google Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G. & Holweger, H., 2004, A&A, 414, 1121 Google Scholar